Applications of entropic spanning graphs

IEEE Signal Processing Magazine - Tập 19 Số 5 - Trang 85-95 - 2002
A.O. Hero, Bing Ma1, O.J.J. Michel, J. Gorman
1M-Vision, Inc.

Tóm tắt

This article presents applications of entropic spanning graphs to imaging and feature clustering applications. Entropic spanning graphs span a set of feature vectors in such a way that the normalized spanning length of the graph converges to the entropy of the feature distribution as the number of random feature vectors increases. This property makes these graphs naturally suited to applications where entropy and information divergence are used as discriminants: texture classification, feature clustering, image indexing, and image registration. Among other areas, these problems arise in geographical information systems, digital libraries, medical information processing, video indexing, multisensor fusion, and content-based retrieval.

Từ khóa

#Entropy #Indexing #Image converters #Image registration #Information systems #Software libraries #Biomedical imaging #Information processing #Information retrieval #Content based retrieval

Tài liệu tham khảo

10.1007/BF02523691 10.1214/aos/1176351045 10.1007/BF00773669 10.1109/TIT.1979.1056067 10.1109/ICCV.1995.466930 10.1111/j.2517-6161.1976.tb01566.x do, 0, Texture similarity measurement using Kullback-Liebler distance on wavelet subbands, IEEE Int Conf Image Processing, 367 csiszár, 1967, Information-type measures of divergence of probability distributions and indirect observations, Studia Sci Math Hung, 2, 299 10.1007/BFb0093472 heemuchwala, 0, Fast entropic-graph matching for image registration, Proc Asilomar 10.1117/12.445366 hero, 2001, Alpha-divergence for classification, indexing and retrieval, Comm and Sig Proc Lab (CSPL) Dept EECS Univ Michigan Ann Arbor Tech Rep 328 heemuchwala, 2002, Application of entropic graphs to image registration, Comm and Sig Proc Lab (CSPL) Dept EECS Univ Michigan Ann Arbor Tech Rep vasconcelos, 0, Feature representations for image re-trieval: Beyond the color histogram, Proc Int Conf Multimedia Expo, 10.1109/ICME.2000.871504 10.1109/DCC.1998.672322 steele, 0, Probability Theory and Combinatorial Optimization (CBMF-NSF Regional Conferences in Applied Mathematics vol 69) Society for Industrial and Applied Mathematics (SIAM) rényi, 1961, On measures of entropy and information, Proc 4th Berkeley Symp Math Stat Prob, 1, 547 10.1109/ICASSP.1998.678151 10.1109/ICIP.1998.723675 10.1007/978-1-4757-3863-6 pluim, 2001, f-information measures in medical image registration, Proc Meeting Int Soc Optical Engin (SPIE), 4322, 579 10.1137/S0895480194266331 10.1002/j.1538-7305.1957.tb01515.x van-trees, 1968, Detection Estimation and Modulation Theory Part I cormen, 1990, Introduction to Algorithms chung, 0, Parallel implementation of Borvka's minimal spanning tree algorithm, Proc 10th Int Parallel Processing Symp cover, 1987, Elements of Information Theory 10.1017/S0305004100034095 10.1016/0165-1684(89)90079-0 birgé, 1995, Estimation of integral functions of a density, Ann Statist, 23, 11, 10.1214/aos/1176324452 beirlant, 1997, Nonparametric entropy estimation: An overview, Intern J Math Stat Sci, 6, 17 o'sullivan, 0, Divergence penalty for image registration, Proc IEEE int Conf Acoust Speech Sig Proc 10.1109/TFSA.1994.467363 mclachlan, 1988, Mixture Models Inference and Applications to Clustering 10.1109/18.42194 10.1109/ICASSP.2000.861871 lecam, 1986, Asymptotic Methods in Statistical Decision Theory kruskal, 1956, On the shortest spanning subtree of a graph and the traveling salesman problem, Proc Amer Math Soc, 7, 48, 10.1090/S0002-9939-1956-0078686-7 ma, 0, Image registration with minimal spanning tree algorithm, Proc IEEE Int Conf Image Processing, 10.1109/ICIP.2000.901000 ma, 2001, Parametric and non-parametric approaches for multisensor data fusion 10.1109/SFCS.1997.646145 10.1109/TIT.1976.1055550 10.1109/18.485716 10.1109/ICIP.2001.958038 10.1016/0167-8655(83)90059-4 10.1109/18.782114 10.1007/978-1-4899-0027-2 10.1002/0471725250 hero, 0, Convergence rates of minimal graphs with random vertices, Submitted for Publication Available at hero, 0, Estimation of Rényi information divergence via pruned minimal spanning trees, Proc IEEE Workshop Higher Order Sta-tistics 10.1117/12.323804 joe, 1989, On the estimation of entropy and other functionals of a multivariate density, Ann Inst Statist Math, 41, 683, 10.1007/BF00057735 10.1109/ICASSP.1994.389454 kim, 2001, Comparison of GLR and invariant detectors under structured clutter covariance, IEEE Trans Image Processing, 10, 1509, 10.1109/83.951536