Applications of entropic spanning graphs
Tóm tắt
This article presents applications of entropic spanning graphs to imaging and feature clustering applications. Entropic spanning graphs span a set of feature vectors in such a way that the normalized spanning length of the graph converges to the entropy of the feature distribution as the number of random feature vectors increases. This property makes these graphs naturally suited to applications where entropy and information divergence are used as discriminants: texture classification, feature clustering, image indexing, and image registration. Among other areas, these problems arise in geographical information systems, digital libraries, medical information processing, video indexing, multisensor fusion, and content-based retrieval.
Từ khóa
#Entropy #Indexing #Image converters #Image registration #Information systems #Software libraries #Biomedical imaging #Information processing #Information retrieval #Content based retrievalTài liệu tham khảo
10.1007/BF02523691
10.1214/aos/1176351045
10.1007/BF00773669
10.1109/TIT.1979.1056067
10.1109/ICCV.1995.466930
10.1111/j.2517-6161.1976.tb01566.x
do, 0, Texture similarity measurement using Kullback-Liebler distance on wavelet subbands, IEEE Int Conf Image Processing, 367
csiszár, 1967, Information-type measures of divergence of probability distributions and indirect observations, Studia Sci Math Hung, 2, 299
10.1007/BFb0093472
heemuchwala, 0, Fast entropic-graph matching for image registration, Proc Asilomar
10.1117/12.445366
hero, 2001, Alpha-divergence for classification, indexing and retrieval, Comm and Sig Proc Lab (CSPL) Dept EECS Univ Michigan Ann Arbor Tech Rep 328
heemuchwala, 2002, Application of entropic graphs to image registration, Comm and Sig Proc Lab (CSPL) Dept EECS Univ Michigan Ann Arbor Tech Rep
vasconcelos, 0, Feature representations for image re-trieval: Beyond the color histogram, Proc Int Conf Multimedia Expo, 10.1109/ICME.2000.871504
10.1109/DCC.1998.672322
steele, 0, Probability Theory and Combinatorial Optimization (CBMF-NSF Regional Conferences in Applied Mathematics vol 69) Society for Industrial and Applied Mathematics (SIAM)
rényi, 1961, On measures of entropy and information, Proc 4th Berkeley Symp Math Stat Prob, 1, 547
10.1109/ICASSP.1998.678151
10.1109/ICIP.1998.723675
10.1007/978-1-4757-3863-6
pluim, 2001, f-information measures in medical image registration, Proc Meeting Int Soc Optical Engin (SPIE), 4322, 579
10.1137/S0895480194266331
10.1002/j.1538-7305.1957.tb01515.x
van-trees, 1968, Detection Estimation and Modulation Theory Part I
cormen, 1990, Introduction to Algorithms
chung, 0, Parallel implementation of Borvka's minimal spanning tree algorithm, Proc 10th Int Parallel Processing Symp
cover, 1987, Elements of Information Theory
10.1017/S0305004100034095
10.1016/0165-1684(89)90079-0
birgé, 1995, Estimation of integral functions of a density, Ann Statist, 23, 11, 10.1214/aos/1176324452
beirlant, 1997, Nonparametric entropy estimation: An overview, Intern J Math Stat Sci, 6, 17
o'sullivan, 0, Divergence penalty for image registration, Proc IEEE int Conf Acoust Speech Sig Proc
10.1109/TFSA.1994.467363
mclachlan, 1988, Mixture Models Inference and Applications to Clustering
10.1109/18.42194
10.1109/ICASSP.2000.861871
lecam, 1986, Asymptotic Methods in Statistical Decision Theory
kruskal, 1956, On the shortest spanning subtree of a graph and the traveling salesman problem, Proc Amer Math Soc, 7, 48, 10.1090/S0002-9939-1956-0078686-7
ma, 0, Image registration with minimal spanning tree algorithm, Proc IEEE Int Conf Image Processing, 10.1109/ICIP.2000.901000
ma, 2001, Parametric and non-parametric approaches for multisensor data fusion
10.1109/SFCS.1997.646145
10.1109/TIT.1976.1055550
10.1109/18.485716
10.1109/ICIP.2001.958038
10.1016/0167-8655(83)90059-4
10.1109/18.782114
10.1007/978-1-4899-0027-2
10.1002/0471725250
hero, 0, Convergence rates of minimal graphs with random vertices, Submitted for Publication Available at
hero, 0, Estimation of Rényi information divergence via pruned minimal spanning trees, Proc IEEE Workshop Higher Order Sta-tistics
10.1117/12.323804
joe, 1989, On the estimation of entropy and other functionals of a multivariate density, Ann Inst Statist Math, 41, 683, 10.1007/BF00057735
10.1109/ICASSP.1994.389454
kim, 2001, Comparison of GLR and invariant detectors under structured clutter covariance, IEEE Trans Image Processing, 10, 1509, 10.1109/83.951536