Applications of carbon nanomaterials in perovskite solar cells for solar energy conversion

Nano Materials Science - Tập 3 - Trang 276-290 - 2021
Katherine Moore1, Wei Wei1
1Department of Mechanical Engineering, Wichita State University, 1845 Fairmount St. Wichita, KS 67260, USA

Tài liệu tham khảo

Chu, 2012, Opportunities and challenges for a sustainable energy future, Nature, 488, 294, 10.1038/nature11475 Im, 2014, Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells, Nat. Nanotechnol., 9, 927, 10.1038/nnano.2014.181 Chondroudis, 1999, Electroluminescence from an Organic−Inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers, Chem. Mater., 11, 3028, 10.1021/cm990561t Jeon, 2015, Compositional engineering of perovskite materials for high-performance solar cells, Nature, 517, 476, 10.1038/nature14133 Xu, 2015, Hole selective NiO contact for efficient perovskite solar cells with carbon electrode, Nano Lett., 15, 2402, 10.1021/nl504701y Green, 2014, The emergence of perovskite solar cells, Nat. Photonics, 8, 506, 10.1038/nphoton.2014.134 Jung, 2015, Solar cells: perovskite solar cells: from materials to devices, Small, 11 Papavassiliou, 1996, Synthetic three-and lower-dimensional semiconductors based on inorganic units, Mol Cryst Liquid Cryst Sci Technol Sect A Mol Cryst Liquid Cryst, 286, 231, 10.1080/10587259608042291 Kenichiro, 2003, Bandgap and exciton binding energies in lead-iodide-based natural quantum-well crystals, Sci. Technol. Adv. Mater., 4, 599, 10.1016/j.stam.2003.09.019 Bretschneider, 2014, Research update: physical and electrical characteristics of lead halide perovskites for solar cell applications, Apl. Mater., 2, 10.1063/1.4871795 Weber, 1978, Ch3nh3pbx3, Ein Pb(Ii)-System Mit Kubischer Perowskitstruktur/Ch3nh3pbx3, a Pb(Ii)-System with cubic perovskite structure, Z. Naturforsch. B Chem. Sci., 33, 1443, 10.1515/znb-1978-1214 Kim, 2012, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep., 2, 591, 10.1038/srep00591 Hu, 2014, High-performance flexible broadband photodetector based on organolead halide perovskite, Adv. Funct. Mater., 24, 7373, 10.1002/adfm.201402020 Gil-Escrig, 2015, Efficient photovoltaic and electroluminescent perovskite devices, Chem. Commun., 51, 569, 10.1039/C4CC07518H Kojima, 2009, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131, 6050, 10.1021/ja809598r Im, 2011, 6.5% efficient perovskite quantum-dot-sensitized solar cell, Nanoscale, 3, 4088, 10.1039/c1nr10867k Lee, 2012, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science, 338, 643, 10.1126/science.1228604 Noh, 2013, Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells, Nano Lett., 13, 1764, 10.1021/nl400349b Burschka, 2013, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 499, 316, 10.1038/nature12340 Liu, 2013, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature, 501, 395, 10.1038/nature12509 Jeon, 2014, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells, Nat. Mater., 13, 897, 10.1038/nmat4014 Zhou, 2014, Interface engineering of highly efficient perovskite solar cells, Science, 345, 542, 10.1126/science.1254050 Ball, 2013, Low-temperature processed meso-superstructured to thin-film perovskite solar cells, Energy Environ. Sci., 6, 1739, 10.1039/c3ee40810h Li, 2015, Inorganic P-type contact materials for perovskite-based solar cells, J. Mater. Chem. A, 3, 9011, 10.1039/C4TA06425A Wang, 2014, P-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells, Sci. Rep., 4, 4756, 10.1038/srep04756 Wang, 2014, Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells, ACS Appl. Mater. Interfaces, 6, 11851, 10.1021/am503610u Jeng, 2013, CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells, Adv. Mater., 25, 3727, 10.1002/adma.201301327 Laban, 2013, Depleted hole conductor-free lead halide iodide heterojunction solar cells, Energy Environ. Sci., 6, 3249, 10.1039/c3ee42282h Shi, 2014, Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: high efficiency and junction property, Appl. Phys. Lett., 104, 10.1063/1.4864638 Etgar, 2012, Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells, J. Am. Chem. Soc., 134, 17396, 10.1021/ja307789s Aharon, 2014, Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells, Phys. Chem. Chem. Phys., 16, 10512, 10.1039/C4CP00460D Kaskela, 2010, Aerosol-synthesized swcnt networks with tunable conductivity and transparency by a dry transfer technique, Nano Lett., 10, 4349, 10.1021/nl101680s Reddy, 2016, Highly efficient organic hole transporting materials for perovskite and organic solar cells with long-term stability, Adv. Mater., 28, 686, 10.1002/adma.201503729 Ebbesen, 1992, Large-scale synthesis of carbon nanotubes, Nature, 358, 220, 10.1038/358220a0 Baughman, 2002, Carbon nanotubes--the route toward applications, Science, 297, 787, 10.1126/science.1060928 Bao, 2012, Graphene photonics, plasmonics, and broadband optoelectronic devices, ACS Nano, 6, 3677, 10.1021/nn300989g Guo, 2011, Graphene based materials: enhancing solar energy harvesting, Adv Energy Mater, 1, 448, 10.1002/aenm.201100119 De Volder, 2013, Carbon nanotubes: present and future commercial applications, Science, 339, 535, 10.1126/science.1222453 Hatton, 2008, Carbon nanotubes: a multi-functional material for organic optoelectronics, J. Mater. Chem., 18, 1183, 10.1039/b713527k Iijima, 1993, Single-shell carbon nanotubes of 1-nm diameter, Nature, 363, 603, 10.1038/363603a0 Habisreutinger, 2014, Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells, Nano Lett., 14, 5561, 10.1021/nl501982b Sharkey, 2014, Engineering nanostructures by binding single molecules to single-walled carbon nanotubes, ACS Nano, 8, 12748, 10.1021/nn505860a D’Souza, 2010, Swnt-based supramolecular nanoarchitectures with photosensitizing donor and acceptor molecules, J. Phys. Chem. Lett., 1, 2586, 10.1021/jz1009407 Coleman, 2006, Reinforcement of polymers with carbon nanotubes. The role of an ordered polymer interfacial region. Experiment and modeling, Polymer, 47, 8556, 10.1016/j.polymer.2006.10.014 Li, Z.; Kulkarni, S. A.; Boix, P. P.; Shi, E.; Cao, A.; Fu, K.; Batabyal, S. K.; Zhang, J.; Xiong, Q.; Wong, L. H.; Mathews, N.; Mhaisalkar, S. G., Laminated Carbon Nanotube Networks for Metal Electrode-free Efficient Perovskite Solar Cells. vol. 4. Li, 2016, Carbon nanotubes as an efficient hole collector for high voltage methylammonium lead bromide perovskite solar cells, Nanoscale, 8, 6352, 10.1039/C5NR06177F Lee, 2015, Hierarchically structured hole transport layers of spiro-ometad and multiwalled carbon nanotubes for perovskite solar cells, ChemSusChem, 8, 2358, 10.1002/cssc.201403462 Aitola, 2016, Carbon nanotube-based hybrid hole-transporting material and selective contact for high efficiency perovskite solar cells, Energy Environ. Sci., 9, 461, 10.1039/C5EE03394B Geng, 2006, Influence of single-walled carbon nanotubes induced crystallinity enhancement and morphology change on polymer photovoltaic devices, J. Am. Chem. Soc., 128, 16827, 10.1021/ja065035z Schuettfort, 2010, Synthesis and spectroscopic characterization of solution processable highly ordered polythiophene–carbon nanotube nanohybrid structures, Nanotechnology, 21, 10.1088/0957-4484/21/2/025201 Ihly, 2016, Efficient charge extraction and slow recombination in organic-inorganic perovskites capped with semiconducting single-walled carbon nanotubes, Energy Environ. Sci., 9, 1439, 10.1039/C5EE03806E Phuong Le, 2011, Synthesis and optoelectronic behavior of conjugated polymer poly(3-hexylthiophene) grafted on multiwalled carbon nanotubes, J. Polym. Sci. B Polym. Phys., 49, 581, 10.1002/polb.22210 Song, 2012, Prospects and challenges of organic/group IV nanomaterial solar cells, J. Mater. Chem., 22, 4216, 10.1039/c2jm14943e Cai, 2015, An efficient hole transport material composite based on poly(3-hexylthiophene) and bamboo-structured carbon nanotubes for high performance perovskite solar cells, J. Mater. Chem. A, 3, 2784, 10.1039/C4TA04997G Chen, 2013, Efficient panchromatic inorganic-organic heterojunction solar cells with consecutive charge transport tunnels in hole transport material, Chem. Commun., 49, 7277, 10.1039/c3cc42297f Lee, 2011, Selective electron- or hole-transport enhancement in bulk-heterojunction organic solar cells with N- or B-doped carbon nanotubes, Adv. Mater., 23, 629, 10.1002/adma.201003296 Zhang, 2016, Enhancing the grain size of organic halide perovskites by sulfonate-carbon nanotube incorporation in high performance perovskite solar cells, Chem. Commun., 52, 5674, 10.1039/C6CC00268D Chen, 2012, Intertwined aligned carbon nanotube fiber based dye-sensitized solar cells, Nano Lett., 12, 2568, 10.1021/nl300799d Chen, 2013, Novel solar cells in a wire format, Chem. Soc. Rev., 42, 5031, 10.1039/c3cs35465b Chen, 2012, Designing aligned inorganic nanotubes at the electrode interface: towards highly efficient photovoltaic wires, Adv. Mater., 24, 4623, 10.1002/adma.201201893 Li, 2015, Wearable double-twisted fibrous perovskite solar cell, Adv. Mater., 27, 3831, 10.1002/adma.201501333 Qiu, 2014, Integrating perovskite solar cells into a flexible fiber, Angew. Chem. Int. Ed., 53, 10425, 10.1002/anie.201404973 Qiu, 2016, Fiber-shaped perovskite solar cells with high power conversion efficiency, Small, 12, 2419, 10.1002/smll.201600326 Wu, 2014, Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor, Nanoscale, 6, 10505, 10.1039/C4NR03181D Liu, 2015, Fine-tuning optical and electronic properties of graphene oxide for highly efficient perovskite solar cells, Nanoscale, 7, 10708, 10.1039/C5NR01433F Feng, 2016, High-performance perovskite solar cells engineered by an ammonia modified graphene oxide interfacial layer, ACS Appl. Mater. Interfaces, 8, 14503, 10.1021/acsami.6b02064 Yeo, 2015, Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer, Nano Energy, 12, 96, 10.1016/j.nanoen.2014.12.022 Cao, 2015, Well-defined thiolated nanographene as hole-transporting material for efficient and stable perovskite solar cells, J. Am. Chem. Soc., 137, 10914, 10.1021/jacs.5b06493 Zhu, 2014, Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots, J. Am. Chem. Soc., 136, 3760, 10.1021/ja4132246 Leijtens, 2013, Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells, Nat. Commun., 4, 2885, 10.1038/ncomms3885 Li, 2016, Insight into the CH3NH3PbI3/C interface in hole-conductor-free mesoscopic perovskite solar cells, Nanoscale, 8, 14163, 10.1039/C6NR03359H Wei, 2016, 3d mos2/graphene hybrid layer materials as counter electrodes for dye-sensitized solar cells, vol. 28, 268 Wei, 2016, An efficient counter electrode material for dye-sensitized solar cells-flower-structured 1t metallic phase Mos2, J. Mater. Chem. A, 4, 12398, 10.1039/C6TA04743B Wei, 2014, A review on pedot-based counter electrodes for dye-sensitized solar cells, Int. J. Energy Res., 38, 1099, 10.1002/er.3178 Wei, 2016, The bright future for electrode materials of energy devices: highly conductive porous Na-embedded carbon, Nano Lett., 16, 8029, 10.1021/acs.nanolett.6b04742 Wei, 2016, Direct conversion of CO2 to 3D graphene and its excellent performance for dye-sensitized solar cells with 10% efficiency, J. Mater. Chem. A, 4, 12054, 10.1039/C6TA04008J Wei, 2015, Synthesis of carbon nanomaterials for dye-sensitized solar cells, Int. J. Energy Res., 39, 842, 10.1002/er.3312 Wei, 2014, Synthesis of 3D cauliflower-fungus-like graphene from CO2 as a highly efficient counter electrode material for dye-sensitized solar cells, J. Mater. Chem. A, 2, 16842, 10.1039/C4TA03909B Wei, 2017, Potassium-chemical synthesis of 3D graphene from CO2 and its excellent performance for Htm-free perovskite solar cells, J. Mater. Chem. A, 5, 7749, 10.1039/C7TA01768E Wei, 2017, Synthesis of mesochannel carbon nanowall material from CO2 and its excellent performance for perovskite solar cells, Ind. Eng. Chem. Res., 56, 1803, 10.1021/acs.iecr.6b04768 Leo, 2015, Perovskite photovoltaics: signs of stability, Nat. Nanotechnol., 10, 574, 10.1038/nnano.2015.139 Liu, 2016, Using a low-temperature carbon electrode for preparing hole-conductor-free perovskite heterojunction solar cells under high relative humidity, Nanoscale, 8, 7017, 10.1039/C5NR07091K Yu, 2016, Stable organic–inorganic perovskite solar cells without hole-conductor layer achieved via cell structure design and contact engineering, Adv. Funct. Mater., 26, 4866, 10.1002/adfm.201504564 Yue, 2016, Low-temperature prepared carbon electrodes for hole-conductor-free mesoscopic perovskite solar cells, Electrochim. Acta, 218, 84, 10.1016/j.electacta.2016.09.112 Luo, 2016, Cross-stacked superaligned carbon nanotube electrodes for efficient hole conductor-free perovskite solar cells, J. Mater. Chem. A, 4, 5569, 10.1039/C6TA01715K Zheng, 2016, High-performance, stable and low-cost mesoscopic perovskite (CH3NH3PbI3) solar cells based on poly(3-hexylthiophene)-modified carbon nanotube cathodes, Front. Optoelectron., 9, 71, 10.1007/s12200-016-0566-7 Gopi, 2017, Low-temperature easy-processed carbon nanotube contact for high-performance metal- and hole-transporting layer-free perovskite solar cells, J. Photochem. Photobiol. Chem., 332, 265, 10.1016/j.jphotochem.2016.09.003 Ito, 2016, Light stability tests of CH3NH3PbI3 perovskite solar cells using porous carbon counter electrodes, Phys. Chem. Chem. Phys., 18, 27102, 10.1039/C6CP03388A Baranwal, 2016, 100 °C thermal stability of printable perovskite solar cells using porous carbon counter electrodes, ChemSusChem, 9, 2604, 10.1002/cssc.201600933 Mei, 2014, A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability, Science, 345, 295, 10.1126/science.1254763 Xiao, 2014, Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers, Energy Environ. Sci., 7, 2619, 10.1039/C4EE01138D Wang, 2014, Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process, Energy Environ. Sci., 7, 2359, 10.1039/C4EE00233D Hao, 2014, Controllable perovskite crystallization at a gas–solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%, J. Am. Chem. Soc., 136, 16411, 10.1021/ja509245x Ku, 2013, Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode, Sci. Rep., 3, 3132, 10.1038/srep03132 Yang, 2015, The size effect of TiO2 nanoparticles on a printable mesoscopic perovskite solar cell, J. Mater. Chem. A, 3, 9103, 10.1039/C4TA07030E Liu, 2015, Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer, J. Am. Chem. Soc., 137, 1790, 10.1021/ja5125594 Li, 2015, Outdoor performance and stability under elevated temperatures and long-term light soaking of triple-layer mesoporous perovskite photovoltaics, Energy Technol., 3, 551, 10.1002/ente.201500045 Rong, 2014, Hole-conductor-free mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cells based on anatase nanosheets and carbon counter electrodes, J. Phys. Chem. Lett., 5, 2160, 10.1021/jz500833z Zhang, 2015, The effect of carbon counter electrodes on fully printable mesoscopic perovskite solar cells, J. Mater. Chem. A, 3, 9165, 10.1039/C4TA04647A Chen, 2016, Solvent engineering boosts the efficiency of paintable carbon-based perovskite solar cells to beyond 14%, Adv Energy Mater, 6, 1502087, 10.1002/aenm.201502087 Wei, 2014, Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites, Energy Environ. Sci., 7, 3326, 10.1039/C4EE01983K Yan, 2015, High-performance graphene-based hole conductor-free perovskite solar cells: Schottky junction enhanced hole extraction and electron blocking, Small, 11, 2269, 10.1002/smll.201403348 Wei, 2015, Hysteresis-free multi-walled carbon nanotube-based perovskite solar cells with a high fill factor, J. Mater. Chem. A, 3, 24226, 10.1039/C5TA07714A Zheng, 2017, Boron doping of multiwalled carbon nanotubes significantly enhances hole extraction in carbon-based perovskite solar cells, Nano Lett., 17, 2496, 10.1021/acs.nanolett.7b00200 Zhang, 2015, Engineering of hole-selective contact for low temperature-processed carbon counter electrode-based perovskite solar cells, J. Mater. Chem. A, 3, 24272, 10.1039/C5TA07507F Zhang, 2016, Boosting the efficiency and the stability of low cost perovskite solar cells by using cupc nanorods as hole transport material and carbon as counter electrode, Nano Energy, 20, 108, 10.1016/j.nanoen.2015.11.034 Zhang, 2014, Structure engineering of hole–conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode, ACS Appl. Mater. Interfaces, 6, 16140, 10.1021/am504175x Zhou, 2014, Hole-conductor-free, metal-electrode-free TiO2/CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode, J. Phys. Chem. Lett., 5, 3241, 10.1021/jz5017069 Zhou, 2015, Low-temperature processed and carbon-based ZnO/CH3NH3PbI3/C planar heterojunction perovskite solar cells, J. Phys. Chem. C, 119, 4600, 10.1021/jp512101d Xu, 2016, Strategic improvement of the long-term stability of perovskite materials and perovskite solar cells, Phys. Chem. Chem. Phys., 18, 27026, 10.1039/C6CP04553G Yang, 2014, An all-carbon counter electrode for highly efficient hole-conductor-free organo-metal perovskite solar cells, RSC Adv., 4, 52825, 10.1039/C4RA09519G Wei, 2015, Free-standing flexible carbon electrode for highly efficient hole-conductor-free perovskite solar cells, Carbon, 93, 861, 10.1016/j.carbon.2015.05.042 Wei, 2019, Applications of 3d potassium-ion pre-intercalated graphene for perovskite and dye-sensitized solar cells, Ind. Eng. Chem. Res., 58, 8743, 10.1021/acs.iecr.9b00795 Wei, 2019, Lithium-chemical synthesis of highly conductive 3D mesoporous graphene for highly efficient new generation solar cells, ACS Appl. Energy Mater., 2, 1445, 10.1021/acsaem.8b02014 Wei, 2017, Potassium-chemical synthesis of 3D graphene from CO2 and its excellent performance in HTM-free perovskite solar cells, J. Mater. Chem. A, 5, 7749, 10.1039/C7TA01768E Wei, 2017, Highly conductive Na-embedded carbon nanowalls for hole-transport-material-free perovskite solar cells without metal electrodes, J. Mater. Chem. A, 5, 24126, 10.1039/C7TA07730K Li, 2016, 14.7% efficient mesoscopic perovskite solar cells using single walled carbon nanotubes/carbon composite counter electrodes, Nanoscale, 8, 6379, 10.1039/C5NR07347B Bai, 2016, Cubic: column composite structure (NH2CH=NH2)X(CH3NH3)1-XPbI3 for efficient hole-transport material-free and insulation layer free perovskite solar cells with high stability, Electrochim. Acta, 190, 775, 10.1016/j.electacta.2015.12.170 Zheng, 2016, Designing nanobowl arrays of mesoporous TiO2 as an alternative electron transporting layer for carbon cathode-based perovskite solar cells, Nanoscale, 8, 6393, 10.1039/C5NR06715D Cao, 2015, Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture, Nano Energy, 17, 171, 10.1016/j.nanoen.2015.08.009 Wang, 2014, Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells, Nano Lett., 14, 724, 10.1021/nl403997a Pignon, 2008, Versatility of laser pyrolysis applied to the synthesis of TiO2 nanoparticles – application to UV attenuation, Eur. J. Inorg. Chem., 2008, 883, 10.1002/ejic.200700990 Simon, 2010, N-doped titanium monoxide nanoparticles with TiO rock-salt structure, low energy band gap, and visible light activity, Chem. Mater., 22, 3704, 10.1021/cm100653q Tomokazu, 2015, Boosting of the performance of perovskite solar cells through systematic introduction of reduced graphene oxide in Tio2 layers, Chem. Lett., 44, 1410, 10.1246/cl.150651 Han, 2015, Reduced graphene oxide/mesoporous TiO2 nanocomposite based perovskite solar cells, ACS Appl. Mater. Interfaces, 7, 23521, 10.1021/acsami.5b06171 Wang, 2015, Single-step preparation of TiO2/MWCNT nanohybrid materials by laser pyrolysis and application to efficient photovoltaic energy conversion, ACS Appl. Mater. Interfaces, 7, 51, 10.1021/am507179c Rajasekar, 2013, Preparation of mesoporous TiO2/CNT nanocomposites by synthesis of mesoporous titania via eisa and their photocatalytic degradation under visible light irradiation, Solid State Sci., 26, 45, 10.1016/j.solidstatesciences.2013.09.003 Wang, 2015, Graphene/SrTiO3 nanocomposites used as an effective electron-transporting layer for high-performance perovskite solar cells, RSC Adv., 5, 52041, 10.1039/C5RA09001F Gratzel, 2014, The light and shade of perovskite solar cells, Nat. Mater., 13, 838, 10.1038/nmat4065 Wang, 2015, TiO2 nanotube Arrays based flexible perovskite solar cells with transparent carbon nanotube electrode, Nano Energy, 11, 728, 10.1016/j.nanoen.2014.11.042 Jeon, 2015, Single-walled carbon nanotube film as electrode in indium-free planar heterojunction perovskite solar cells: investigation of electron-blocking layers and dopants, Nano Lett., 15, 6665, 10.1021/acs.nanolett.5b02490 Kuang, 2015, Highly efficient electron transport obtained by doping PCBM with graphdiyne in planar-heterojunction perovskite solar cells, Nano Lett., 15, 2756, 10.1021/acs.nanolett.5b00787 Xiao, 2015, Efficient CH3NH3PbI3 perovskite solar cells based on graphdiyne (Gd)-Modified P3HT hole-transporting material, Adv Energy Mater, 5, 1401943, 10.1002/aenm.201401943 You, 2015, Efficient semitransparent perovskite solar cells with graphene electrodes, Adv. Mater., 27, 3632, 10.1002/adma.201501145 Luo, 2015, Iodide-reduced graphene oxide with dopant-free spiro-ometad for ambient stable and high-efficiency perovskite solar cells, J. Mater. Chem. A, 3, 15996, 10.1039/C5TA02710A Li, 2014, Graphene oxide as dual functional interface modifier for improving wettability and retarding recombination in hybrid perovskite solar cells, J. Mater. Chem. A, 2, 20105, 10.1039/C4TA05196C Wang, 2015, The effect of carbon black in carbon counter electrode for CH3NH3PbI3/TiO2 heterojunction solar cells, RSC Adv., 5, 30192, 10.1039/C5RA02325D Wei, 2015, A multifunctional C + epoxy/Ag-paint cathode enables efficient and stable operation of perovskite solar cells in watery environments, J. Mater. Chem. A, 3, 16430, 10.1039/C5TA03802B Liu, 2015, P-type mesoscopic NiO as an active interfacial layer for carbon counter electrode based perovskite solar cells, Dalton Trans., 44, 3967, 10.1039/C4DT02904F Liu, 2015, NiO nanosheets as efficient top hole transporters for carbon counter electrode based perovskite solar cells, J. Mater. Chem. A, 3, 24121, 10.1039/C5TA06458A Wei, 2014, Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells, Angew. Chem. Int. Ed., 53, 13239, 10.1002/anie.201408638 Fang, 2017, Graphene quantum dot incorporated perovskite films: passivating grain boundaries and facilitating electron extraction, Phys. Chem. Chem. Phys., 19, 6057, 10.1039/C6CP06953C Li, 2017, Carbon quantum dots/tiox electron transport layer boosts efficiency of planar heterojunction perovskite solar cells to 19%, Nano Lett., 17, 2328, 10.1021/acs.nanolett.6b05177