Applications of carbon nanomaterials in perovskite solar cells for solar energy conversion
Tài liệu tham khảo
Chu, 2012, Opportunities and challenges for a sustainable energy future, Nature, 488, 294, 10.1038/nature11475
Im, 2014, Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells, Nat. Nanotechnol., 9, 927, 10.1038/nnano.2014.181
Chondroudis, 1999, Electroluminescence from an Organic−Inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers, Chem. Mater., 11, 3028, 10.1021/cm990561t
Jeon, 2015, Compositional engineering of perovskite materials for high-performance solar cells, Nature, 517, 476, 10.1038/nature14133
Xu, 2015, Hole selective NiO contact for efficient perovskite solar cells with carbon electrode, Nano Lett., 15, 2402, 10.1021/nl504701y
Green, 2014, The emergence of perovskite solar cells, Nat. Photonics, 8, 506, 10.1038/nphoton.2014.134
Jung, 2015, Solar cells: perovskite solar cells: from materials to devices, Small, 11
Papavassiliou, 1996, Synthetic three-and lower-dimensional semiconductors based on inorganic units, Mol Cryst Liquid Cryst Sci Technol Sect A Mol Cryst Liquid Cryst, 286, 231, 10.1080/10587259608042291
Kenichiro, 2003, Bandgap and exciton binding energies in lead-iodide-based natural quantum-well crystals, Sci. Technol. Adv. Mater., 4, 599, 10.1016/j.stam.2003.09.019
Bretschneider, 2014, Research update: physical and electrical characteristics of lead halide perovskites for solar cell applications, Apl. Mater., 2, 10.1063/1.4871795
Weber, 1978, Ch3nh3pbx3, Ein Pb(Ii)-System Mit Kubischer Perowskitstruktur/Ch3nh3pbx3, a Pb(Ii)-System with cubic perovskite structure, Z. Naturforsch. B Chem. Sci., 33, 1443, 10.1515/znb-1978-1214
Kim, 2012, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep., 2, 591, 10.1038/srep00591
Hu, 2014, High-performance flexible broadband photodetector based on organolead halide perovskite, Adv. Funct. Mater., 24, 7373, 10.1002/adfm.201402020
Gil-Escrig, 2015, Efficient photovoltaic and electroluminescent perovskite devices, Chem. Commun., 51, 569, 10.1039/C4CC07518H
Kojima, 2009, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131, 6050, 10.1021/ja809598r
Im, 2011, 6.5% efficient perovskite quantum-dot-sensitized solar cell, Nanoscale, 3, 4088, 10.1039/c1nr10867k
Lee, 2012, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science, 338, 643, 10.1126/science.1228604
Noh, 2013, Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells, Nano Lett., 13, 1764, 10.1021/nl400349b
Burschka, 2013, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 499, 316, 10.1038/nature12340
Liu, 2013, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature, 501, 395, 10.1038/nature12509
Jeon, 2014, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells, Nat. Mater., 13, 897, 10.1038/nmat4014
Zhou, 2014, Interface engineering of highly efficient perovskite solar cells, Science, 345, 542, 10.1126/science.1254050
Ball, 2013, Low-temperature processed meso-superstructured to thin-film perovskite solar cells, Energy Environ. Sci., 6, 1739, 10.1039/c3ee40810h
Li, 2015, Inorganic P-type contact materials for perovskite-based solar cells, J. Mater. Chem. A, 3, 9011, 10.1039/C4TA06425A
Wang, 2014, P-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells, Sci. Rep., 4, 4756, 10.1038/srep04756
Wang, 2014, Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells, ACS Appl. Mater. Interfaces, 6, 11851, 10.1021/am503610u
Jeng, 2013, CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells, Adv. Mater., 25, 3727, 10.1002/adma.201301327
Laban, 2013, Depleted hole conductor-free lead halide iodide heterojunction solar cells, Energy Environ. Sci., 6, 3249, 10.1039/c3ee42282h
Shi, 2014, Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: high efficiency and junction property, Appl. Phys. Lett., 104, 10.1063/1.4864638
Etgar, 2012, Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells, J. Am. Chem. Soc., 134, 17396, 10.1021/ja307789s
Aharon, 2014, Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells, Phys. Chem. Chem. Phys., 16, 10512, 10.1039/C4CP00460D
Kaskela, 2010, Aerosol-synthesized swcnt networks with tunable conductivity and transparency by a dry transfer technique, Nano Lett., 10, 4349, 10.1021/nl101680s
Reddy, 2016, Highly efficient organic hole transporting materials for perovskite and organic solar cells with long-term stability, Adv. Mater., 28, 686, 10.1002/adma.201503729
Ebbesen, 1992, Large-scale synthesis of carbon nanotubes, Nature, 358, 220, 10.1038/358220a0
Baughman, 2002, Carbon nanotubes--the route toward applications, Science, 297, 787, 10.1126/science.1060928
Bao, 2012, Graphene photonics, plasmonics, and broadband optoelectronic devices, ACS Nano, 6, 3677, 10.1021/nn300989g
Guo, 2011, Graphene based materials: enhancing solar energy harvesting, Adv Energy Mater, 1, 448, 10.1002/aenm.201100119
De Volder, 2013, Carbon nanotubes: present and future commercial applications, Science, 339, 535, 10.1126/science.1222453
Hatton, 2008, Carbon nanotubes: a multi-functional material for organic optoelectronics, J. Mater. Chem., 18, 1183, 10.1039/b713527k
Iijima, 1993, Single-shell carbon nanotubes of 1-nm diameter, Nature, 363, 603, 10.1038/363603a0
Habisreutinger, 2014, Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells, Nano Lett., 14, 5561, 10.1021/nl501982b
Sharkey, 2014, Engineering nanostructures by binding single molecules to single-walled carbon nanotubes, ACS Nano, 8, 12748, 10.1021/nn505860a
D’Souza, 2010, Swnt-based supramolecular nanoarchitectures with photosensitizing donor and acceptor molecules, J. Phys. Chem. Lett., 1, 2586, 10.1021/jz1009407
Coleman, 2006, Reinforcement of polymers with carbon nanotubes. The role of an ordered polymer interfacial region. Experiment and modeling, Polymer, 47, 8556, 10.1016/j.polymer.2006.10.014
Li, Z.; Kulkarni, S. A.; Boix, P. P.; Shi, E.; Cao, A.; Fu, K.; Batabyal, S. K.; Zhang, J.; Xiong, Q.; Wong, L. H.; Mathews, N.; Mhaisalkar, S. G., Laminated Carbon Nanotube Networks for Metal Electrode-free Efficient Perovskite Solar Cells. vol. 4.
Li, 2016, Carbon nanotubes as an efficient hole collector for high voltage methylammonium lead bromide perovskite solar cells, Nanoscale, 8, 6352, 10.1039/C5NR06177F
Lee, 2015, Hierarchically structured hole transport layers of spiro-ometad and multiwalled carbon nanotubes for perovskite solar cells, ChemSusChem, 8, 2358, 10.1002/cssc.201403462
Aitola, 2016, Carbon nanotube-based hybrid hole-transporting material and selective contact for high efficiency perovskite solar cells, Energy Environ. Sci., 9, 461, 10.1039/C5EE03394B
Geng, 2006, Influence of single-walled carbon nanotubes induced crystallinity enhancement and morphology change on polymer photovoltaic devices, J. Am. Chem. Soc., 128, 16827, 10.1021/ja065035z
Schuettfort, 2010, Synthesis and spectroscopic characterization of solution processable highly ordered polythiophene–carbon nanotube nanohybrid structures, Nanotechnology, 21, 10.1088/0957-4484/21/2/025201
Ihly, 2016, Efficient charge extraction and slow recombination in organic-inorganic perovskites capped with semiconducting single-walled carbon nanotubes, Energy Environ. Sci., 9, 1439, 10.1039/C5EE03806E
Phuong Le, 2011, Synthesis and optoelectronic behavior of conjugated polymer poly(3-hexylthiophene) grafted on multiwalled carbon nanotubes, J. Polym. Sci. B Polym. Phys., 49, 581, 10.1002/polb.22210
Song, 2012, Prospects and challenges of organic/group IV nanomaterial solar cells, J. Mater. Chem., 22, 4216, 10.1039/c2jm14943e
Cai, 2015, An efficient hole transport material composite based on poly(3-hexylthiophene) and bamboo-structured carbon nanotubes for high performance perovskite solar cells, J. Mater. Chem. A, 3, 2784, 10.1039/C4TA04997G
Chen, 2013, Efficient panchromatic inorganic-organic heterojunction solar cells with consecutive charge transport tunnels in hole transport material, Chem. Commun., 49, 7277, 10.1039/c3cc42297f
Lee, 2011, Selective electron- or hole-transport enhancement in bulk-heterojunction organic solar cells with N- or B-doped carbon nanotubes, Adv. Mater., 23, 629, 10.1002/adma.201003296
Zhang, 2016, Enhancing the grain size of organic halide perovskites by sulfonate-carbon nanotube incorporation in high performance perovskite solar cells, Chem. Commun., 52, 5674, 10.1039/C6CC00268D
Chen, 2012, Intertwined aligned carbon nanotube fiber based dye-sensitized solar cells, Nano Lett., 12, 2568, 10.1021/nl300799d
Chen, 2013, Novel solar cells in a wire format, Chem. Soc. Rev., 42, 5031, 10.1039/c3cs35465b
Chen, 2012, Designing aligned inorganic nanotubes at the electrode interface: towards highly efficient photovoltaic wires, Adv. Mater., 24, 4623, 10.1002/adma.201201893
Li, 2015, Wearable double-twisted fibrous perovskite solar cell, Adv. Mater., 27, 3831, 10.1002/adma.201501333
Qiu, 2014, Integrating perovskite solar cells into a flexible fiber, Angew. Chem. Int. Ed., 53, 10425, 10.1002/anie.201404973
Qiu, 2016, Fiber-shaped perovskite solar cells with high power conversion efficiency, Small, 12, 2419, 10.1002/smll.201600326
Wu, 2014, Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor, Nanoscale, 6, 10505, 10.1039/C4NR03181D
Liu, 2015, Fine-tuning optical and electronic properties of graphene oxide for highly efficient perovskite solar cells, Nanoscale, 7, 10708, 10.1039/C5NR01433F
Feng, 2016, High-performance perovskite solar cells engineered by an ammonia modified graphene oxide interfacial layer, ACS Appl. Mater. Interfaces, 8, 14503, 10.1021/acsami.6b02064
Yeo, 2015, Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer, Nano Energy, 12, 96, 10.1016/j.nanoen.2014.12.022
Cao, 2015, Well-defined thiolated nanographene as hole-transporting material for efficient and stable perovskite solar cells, J. Am. Chem. Soc., 137, 10914, 10.1021/jacs.5b06493
Zhu, 2014, Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots, J. Am. Chem. Soc., 136, 3760, 10.1021/ja4132246
Leijtens, 2013, Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells, Nat. Commun., 4, 2885, 10.1038/ncomms3885
Li, 2016, Insight into the CH3NH3PbI3/C interface in hole-conductor-free mesoscopic perovskite solar cells, Nanoscale, 8, 14163, 10.1039/C6NR03359H
Wei, 2016, 3d mos2/graphene hybrid layer materials as counter electrodes for dye-sensitized solar cells, vol. 28, 268
Wei, 2016, An efficient counter electrode material for dye-sensitized solar cells-flower-structured 1t metallic phase Mos2, J. Mater. Chem. A, 4, 12398, 10.1039/C6TA04743B
Wei, 2014, A review on pedot-based counter electrodes for dye-sensitized solar cells, Int. J. Energy Res., 38, 1099, 10.1002/er.3178
Wei, 2016, The bright future for electrode materials of energy devices: highly conductive porous Na-embedded carbon, Nano Lett., 16, 8029, 10.1021/acs.nanolett.6b04742
Wei, 2016, Direct conversion of CO2 to 3D graphene and its excellent performance for dye-sensitized solar cells with 10% efficiency, J. Mater. Chem. A, 4, 12054, 10.1039/C6TA04008J
Wei, 2015, Synthesis of carbon nanomaterials for dye-sensitized solar cells, Int. J. Energy Res., 39, 842, 10.1002/er.3312
Wei, 2014, Synthesis of 3D cauliflower-fungus-like graphene from CO2 as a highly efficient counter electrode material for dye-sensitized solar cells, J. Mater. Chem. A, 2, 16842, 10.1039/C4TA03909B
Wei, 2017, Potassium-chemical synthesis of 3D graphene from CO2 and its excellent performance for Htm-free perovskite solar cells, J. Mater. Chem. A, 5, 7749, 10.1039/C7TA01768E
Wei, 2017, Synthesis of mesochannel carbon nanowall material from CO2 and its excellent performance for perovskite solar cells, Ind. Eng. Chem. Res., 56, 1803, 10.1021/acs.iecr.6b04768
Leo, 2015, Perovskite photovoltaics: signs of stability, Nat. Nanotechnol., 10, 574, 10.1038/nnano.2015.139
Liu, 2016, Using a low-temperature carbon electrode for preparing hole-conductor-free perovskite heterojunction solar cells under high relative humidity, Nanoscale, 8, 7017, 10.1039/C5NR07091K
Yu, 2016, Stable organic–inorganic perovskite solar cells without hole-conductor layer achieved via cell structure design and contact engineering, Adv. Funct. Mater., 26, 4866, 10.1002/adfm.201504564
Yue, 2016, Low-temperature prepared carbon electrodes for hole-conductor-free mesoscopic perovskite solar cells, Electrochim. Acta, 218, 84, 10.1016/j.electacta.2016.09.112
Luo, 2016, Cross-stacked superaligned carbon nanotube electrodes for efficient hole conductor-free perovskite solar cells, J. Mater. Chem. A, 4, 5569, 10.1039/C6TA01715K
Zheng, 2016, High-performance, stable and low-cost mesoscopic perovskite (CH3NH3PbI3) solar cells based on poly(3-hexylthiophene)-modified carbon nanotube cathodes, Front. Optoelectron., 9, 71, 10.1007/s12200-016-0566-7
Gopi, 2017, Low-temperature easy-processed carbon nanotube contact for high-performance metal- and hole-transporting layer-free perovskite solar cells, J. Photochem. Photobiol. Chem., 332, 265, 10.1016/j.jphotochem.2016.09.003
Ito, 2016, Light stability tests of CH3NH3PbI3 perovskite solar cells using porous carbon counter electrodes, Phys. Chem. Chem. Phys., 18, 27102, 10.1039/C6CP03388A
Baranwal, 2016, 100 °C thermal stability of printable perovskite solar cells using porous carbon counter electrodes, ChemSusChem, 9, 2604, 10.1002/cssc.201600933
Mei, 2014, A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability, Science, 345, 295, 10.1126/science.1254763
Xiao, 2014, Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers, Energy Environ. Sci., 7, 2619, 10.1039/C4EE01138D
Wang, 2014, Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process, Energy Environ. Sci., 7, 2359, 10.1039/C4EE00233D
Hao, 2014, Controllable perovskite crystallization at a gas–solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%, J. Am. Chem. Soc., 136, 16411, 10.1021/ja509245x
Ku, 2013, Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode, Sci. Rep., 3, 3132, 10.1038/srep03132
Yang, 2015, The size effect of TiO2 nanoparticles on a printable mesoscopic perovskite solar cell, J. Mater. Chem. A, 3, 9103, 10.1039/C4TA07030E
Liu, 2015, Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer, J. Am. Chem. Soc., 137, 1790, 10.1021/ja5125594
Li, 2015, Outdoor performance and stability under elevated temperatures and long-term light soaking of triple-layer mesoporous perovskite photovoltaics, Energy Technol., 3, 551, 10.1002/ente.201500045
Rong, 2014, Hole-conductor-free mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cells based on anatase nanosheets and carbon counter electrodes, J. Phys. Chem. Lett., 5, 2160, 10.1021/jz500833z
Zhang, 2015, The effect of carbon counter electrodes on fully printable mesoscopic perovskite solar cells, J. Mater. Chem. A, 3, 9165, 10.1039/C4TA04647A
Chen, 2016, Solvent engineering boosts the efficiency of paintable carbon-based perovskite solar cells to beyond 14%, Adv Energy Mater, 6, 1502087, 10.1002/aenm.201502087
Wei, 2014, Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites, Energy Environ. Sci., 7, 3326, 10.1039/C4EE01983K
Yan, 2015, High-performance graphene-based hole conductor-free perovskite solar cells: Schottky junction enhanced hole extraction and electron blocking, Small, 11, 2269, 10.1002/smll.201403348
Wei, 2015, Hysteresis-free multi-walled carbon nanotube-based perovskite solar cells with a high fill factor, J. Mater. Chem. A, 3, 24226, 10.1039/C5TA07714A
Zheng, 2017, Boron doping of multiwalled carbon nanotubes significantly enhances hole extraction in carbon-based perovskite solar cells, Nano Lett., 17, 2496, 10.1021/acs.nanolett.7b00200
Zhang, 2015, Engineering of hole-selective contact for low temperature-processed carbon counter electrode-based perovskite solar cells, J. Mater. Chem. A, 3, 24272, 10.1039/C5TA07507F
Zhang, 2016, Boosting the efficiency and the stability of low cost perovskite solar cells by using cupc nanorods as hole transport material and carbon as counter electrode, Nano Energy, 20, 108, 10.1016/j.nanoen.2015.11.034
Zhang, 2014, Structure engineering of hole–conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode, ACS Appl. Mater. Interfaces, 6, 16140, 10.1021/am504175x
Zhou, 2014, Hole-conductor-free, metal-electrode-free TiO2/CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode, J. Phys. Chem. Lett., 5, 3241, 10.1021/jz5017069
Zhou, 2015, Low-temperature processed and carbon-based ZnO/CH3NH3PbI3/C planar heterojunction perovskite solar cells, J. Phys. Chem. C, 119, 4600, 10.1021/jp512101d
Xu, 2016, Strategic improvement of the long-term stability of perovskite materials and perovskite solar cells, Phys. Chem. Chem. Phys., 18, 27026, 10.1039/C6CP04553G
Yang, 2014, An all-carbon counter electrode for highly efficient hole-conductor-free organo-metal perovskite solar cells, RSC Adv., 4, 52825, 10.1039/C4RA09519G
Wei, 2015, Free-standing flexible carbon electrode for highly efficient hole-conductor-free perovskite solar cells, Carbon, 93, 861, 10.1016/j.carbon.2015.05.042
Wei, 2019, Applications of 3d potassium-ion pre-intercalated graphene for perovskite and dye-sensitized solar cells, Ind. Eng. Chem. Res., 58, 8743, 10.1021/acs.iecr.9b00795
Wei, 2019, Lithium-chemical synthesis of highly conductive 3D mesoporous graphene for highly efficient new generation solar cells, ACS Appl. Energy Mater., 2, 1445, 10.1021/acsaem.8b02014
Wei, 2017, Potassium-chemical synthesis of 3D graphene from CO2 and its excellent performance in HTM-free perovskite solar cells, J. Mater. Chem. A, 5, 7749, 10.1039/C7TA01768E
Wei, 2017, Highly conductive Na-embedded carbon nanowalls for hole-transport-material-free perovskite solar cells without metal electrodes, J. Mater. Chem. A, 5, 24126, 10.1039/C7TA07730K
Li, 2016, 14.7% efficient mesoscopic perovskite solar cells using single walled carbon nanotubes/carbon composite counter electrodes, Nanoscale, 8, 6379, 10.1039/C5NR07347B
Bai, 2016, Cubic: column composite structure (NH2CH=NH2)X(CH3NH3)1-XPbI3 for efficient hole-transport material-free and insulation layer free perovskite solar cells with high stability, Electrochim. Acta, 190, 775, 10.1016/j.electacta.2015.12.170
Zheng, 2016, Designing nanobowl arrays of mesoporous TiO2 as an alternative electron transporting layer for carbon cathode-based perovskite solar cells, Nanoscale, 8, 6393, 10.1039/C5NR06715D
Cao, 2015, Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture, Nano Energy, 17, 171, 10.1016/j.nanoen.2015.08.009
Wang, 2014, Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells, Nano Lett., 14, 724, 10.1021/nl403997a
Pignon, 2008, Versatility of laser pyrolysis applied to the synthesis of TiO2 nanoparticles – application to UV attenuation, Eur. J. Inorg. Chem., 2008, 883, 10.1002/ejic.200700990
Simon, 2010, N-doped titanium monoxide nanoparticles with TiO rock-salt structure, low energy band gap, and visible light activity, Chem. Mater., 22, 3704, 10.1021/cm100653q
Tomokazu, 2015, Boosting of the performance of perovskite solar cells through systematic introduction of reduced graphene oxide in Tio2 layers, Chem. Lett., 44, 1410, 10.1246/cl.150651
Han, 2015, Reduced graphene oxide/mesoporous TiO2 nanocomposite based perovskite solar cells, ACS Appl. Mater. Interfaces, 7, 23521, 10.1021/acsami.5b06171
Wang, 2015, Single-step preparation of TiO2/MWCNT nanohybrid materials by laser pyrolysis and application to efficient photovoltaic energy conversion, ACS Appl. Mater. Interfaces, 7, 51, 10.1021/am507179c
Rajasekar, 2013, Preparation of mesoporous TiO2/CNT nanocomposites by synthesis of mesoporous titania via eisa and their photocatalytic degradation under visible light irradiation, Solid State Sci., 26, 45, 10.1016/j.solidstatesciences.2013.09.003
Wang, 2015, Graphene/SrTiO3 nanocomposites used as an effective electron-transporting layer for high-performance perovskite solar cells, RSC Adv., 5, 52041, 10.1039/C5RA09001F
Gratzel, 2014, The light and shade of perovskite solar cells, Nat. Mater., 13, 838, 10.1038/nmat4065
Wang, 2015, TiO2 nanotube Arrays based flexible perovskite solar cells with transparent carbon nanotube electrode, Nano Energy, 11, 728, 10.1016/j.nanoen.2014.11.042
Jeon, 2015, Single-walled carbon nanotube film as electrode in indium-free planar heterojunction perovskite solar cells: investigation of electron-blocking layers and dopants, Nano Lett., 15, 6665, 10.1021/acs.nanolett.5b02490
Kuang, 2015, Highly efficient electron transport obtained by doping PCBM with graphdiyne in planar-heterojunction perovskite solar cells, Nano Lett., 15, 2756, 10.1021/acs.nanolett.5b00787
Xiao, 2015, Efficient CH3NH3PbI3 perovskite solar cells based on graphdiyne (Gd)-Modified P3HT hole-transporting material, Adv Energy Mater, 5, 1401943, 10.1002/aenm.201401943
You, 2015, Efficient semitransparent perovskite solar cells with graphene electrodes, Adv. Mater., 27, 3632, 10.1002/adma.201501145
Luo, 2015, Iodide-reduced graphene oxide with dopant-free spiro-ometad for ambient stable and high-efficiency perovskite solar cells, J. Mater. Chem. A, 3, 15996, 10.1039/C5TA02710A
Li, 2014, Graphene oxide as dual functional interface modifier for improving wettability and retarding recombination in hybrid perovskite solar cells, J. Mater. Chem. A, 2, 20105, 10.1039/C4TA05196C
Wang, 2015, The effect of carbon black in carbon counter electrode for CH3NH3PbI3/TiO2 heterojunction solar cells, RSC Adv., 5, 30192, 10.1039/C5RA02325D
Wei, 2015, A multifunctional C + epoxy/Ag-paint cathode enables efficient and stable operation of perovskite solar cells in watery environments, J. Mater. Chem. A, 3, 16430, 10.1039/C5TA03802B
Liu, 2015, P-type mesoscopic NiO as an active interfacial layer for carbon counter electrode based perovskite solar cells, Dalton Trans., 44, 3967, 10.1039/C4DT02904F
Liu, 2015, NiO nanosheets as efficient top hole transporters for carbon counter electrode based perovskite solar cells, J. Mater. Chem. A, 3, 24121, 10.1039/C5TA06458A
Wei, 2014, Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells, Angew. Chem. Int. Ed., 53, 13239, 10.1002/anie.201408638
Fang, 2017, Graphene quantum dot incorporated perovskite films: passivating grain boundaries and facilitating electron extraction, Phys. Chem. Chem. Phys., 19, 6057, 10.1039/C6CP06953C
Li, 2017, Carbon quantum dots/tiox electron transport layer boosts efficiency of planar heterojunction perovskite solar cells to 19%, Nano Lett., 17, 2328, 10.1021/acs.nanolett.6b05177