Applications of an elementary resolution of singularities algorithm to exponential sums and congruences modulo p n

Springer Science and Business Media LLC - Tập 212 Số 1 - Trang 315-335 - 2016
Michael Greenblatt1
1Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 322 Science and Engineering Offices, 851 S. Morgan Street, Chicago, IL, 60607-7045, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

V. Arnold, S Gusein-Zade and A. Varchenko, Singularities of Differentiable Maps. Volume II, Monographs in Mathematics, Vol. 83, Birkhäuser, Boston, MA, 1988.

R. Cluckers, Analytic Van der Corput Lemma for p-adic oscillatory integrals, singular Fourier transforms, and restriction theorems, Expositiones Mathematicae 29 2011, 371–386.

J. Denef, Report on Igusa’s local zeta function. Séminaire Bourbaki, Vol. 1990/91, Astérisque No. 201–203 (1991), Exp. No. 741, 359–386 (1992).

J. Denef and K. Hoornaert, Newton polyhedra and Igusa’s local zeta function, Journal of Number Theory 89 2001, 31–64.

J. Denef and F. Loeser, Motivic Igusa zeta functions, Journal of Algebraic Geometry 7 1998, 505–537.

F. Gouvea, p-adic Numbers. An Introduction, Second edition, Universitext, Springer-Verlag, Berlin, 1997.

M. Greenblatt, A Coordinate-dependent local resolution of singularities and applications, Journal of Functional Analysis 255 2008, 1957–1994.

M. Greenblatt, Resolution of singularities, asymptotic expansions of oscillatory integrals, and related phenomena, Journal d’Analyse Mathématique 111 2011, 221–245.

M. Greenblatt, Oscillatory integral decay, sublevel set growth, and the Newton polyhedron, Mathematische Annalen 346 2010, 857–895.

M. Greenblatt, A constructive elementary method for local resolution of singularities, submitted.

H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, Annals of Mathematics 79 1964, 109–203.

H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. II, Annals of Mathematics 79 1964, 205–326.

J. Igusa, Complex powers and asymptotic expansions. I, Journal für die Reine und Agnewandte Mathematik 268/269 1974, 110–130.

J. Igusa, Complex powers and asymptotic expansions. II, Journal für die Reine und Agnewandte Mathematik 278/279 1975, 307–321.

J. Igusa, Forms of Higher Degree, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, Vol. 59, Tata Institute of Fundamental Research, Bombay; Narosa, New Delhi, 1978.

B. Lichtin and D. Meuser, Poles of local zeta functions and Newton polygons, Compositio Mathematica 55 1985, 313–332.

K. Rogers, A van der Corput lemma for the p-adic numbers, Proceedings of the American Mathematical Society 133 2005, 3525–3534.

A. N. Varchenko, Newton polyhedra and estimation of oscillating integrals, Functional Analysis and its Applications 18 1976, 175–196.

W. Veys, Determination of the poles of the topological zeta function for curves, Manuscripta Mathematica 87 1995, 435–448.

J. Wright, Exponential sums and polynomial congruences in two variables: the quasihomogeneous case, preprint.

W. Zuniga-Galindo, Igusa’s local zeta functions of semiquasihomogeneous polynomials, Transactions of the American Mathematical Society 353 2001, 3193–3207.

W. Zuniga-Galindo, Local zeta functions and Newton polyhedra, Nagoya Mathematical Journal 172 2003, 31–58.