Applications of CRISPR Genome Engineering in Cell Biology
Tài liệu tham khảo
Capecchi, 1989, Altering the genome by homologous recombination, Science, 244, 1288, 10.1126/science.2660260
Rudin, 1989, Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae, Genetics, 122, 519, 10.1093/genetics/122.3.519
Bibikova, 2001, Stimulation of homologous recombination through targeted cleavage by chimeric nucleases, Mol. Cell Biol., 21, 289, 10.1128/MCB.21.1.289-297.2001
Bibikova, 2002, Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases, Genetics, 161, 1169, 10.1093/genetics/161.3.1169
Urnov, 2005, Highly efficient endogenous human gene correction using designed zinc-finger nucleases, Nature, 435, 646, 10.1038/nature03556
Christian, 2010, Targeting DNA double-strand breaks with TAL effector nucleases, Genetics, 186, 757, 10.1534/genetics.110.120717
Gaj, 2013, ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering, Trends Biotechnol., 31, 397, 10.1016/j.tibtech.2013.04.004
Wolfe, 2000, DNA recognition by Cys2His2 zinc finger proteins, Annu. Rev. Biophys. Biomol. Struct., 29, 183, 10.1146/annurev.biophys.29.1.183
Beerli, 2002, Engineering polydactyl zinc-finger transcription factors, Nat. Biotechnol., 20, 135, 10.1038/nbt0202-135
Konermann, 2013, Optical control of mammalian endogenous transcription and epigenetic states, Nature, 500, 472, 10.1038/nature12466
Zhang, 2011, Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription, Nat. Biotechnol., 29, 149, 10.1038/nbt.1775
Maeder, 2013, CRISPR RNA-guided activation of endogenous human genes, Nat. Methods, 10, 977, 10.1038/nmeth.2598
Wiedenheft, 2012, RNA-guided genetic silencing systems in bacteria and archaea, Nature, 482, 331, 10.1038/nature10886
Marraffini, 2010, CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea, Nat. Rev. Genet., 11, 181, 10.1038/nrg2749
Nakata, 1982, Cloning of alkaline phosphatase isozyme gene (iap) of Escherichia coli, Gene, 19, 313, 10.1016/0378-1119(82)90021-X
Barrangou, 2007, CRISPR provides acquired resistance against viruses in prokaryotes, Science, 315, 1709, 10.1126/science.1138140
Brouns, 2008, Small CRISPR RNAs guide antiviral defense in prokaryotes, Science, 321, 960, 10.1126/science.1159689
Jinek, 2012, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, 337, 816, 10.1126/science.1225829
Deltcheva, 2011, CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III, Nature, 471, 602, 10.1038/nature09886
Sapranauskas, 2011, The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli, Nucleic. Acids Res., 39, 9275, 10.1093/nar/gkr606
Marraffini, 2010, Self versus non-self discrimination during CRISPR RNA-directed immunity, Nature, 463, 568, 10.1038/nature08703
Cong, 2013, Multiplex genome engineering using CRISPR/Cas systems, Science, 339, 819, 10.1126/science.1231143
Mali, 2013, RNA-guided human genome engineering via Cas9, Science, 339, 823, 10.1126/science.1232033
Jinek, 2013, RNA-programmed genome editing in human cells, Elife, 2, e00471, 10.7554/eLife.00471
Hwang, 2013, Efficient genome editing in zebrafish using a CRISPR-Cas system, Nat. Biotechnol., 31, 227, 10.1038/nbt.2501
Cho, 2013, Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease, Nat. Biotechnol., 31, 230, 10.1038/nbt.2507
Makarova, 2015, An updated evolutionary classification of CRISPR-Cas systems, Nat. Rev. Microbiol., 13, 722, 10.1038/nrmicro3569
Chylinski, 2014, Classification and evolution of type II CRISPR-Cas systems, Nucleic. Acids Res., 42, 6091, 10.1093/nar/gku241
Gasiunas, 2012, Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria, Proc. Natl. Acad. Sci. U.S.A., 109, E2579, 10.1073/pnas.1208507109
Ran, 2015, In vivo genome editing using Staphylococcus aureus Cas9, Nature, 520, 186, 10.1038/nature14299
Zhang, 2013, Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis, Mol. Cell, 50, 488, 10.1016/j.molcel.2013.05.001
Mali, 2013, CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering, Nat. Biotechnol., 31, 833, 10.1038/nbt.2675
Sampson, 2013, A CRISPR/Cas system mediates bacterial innate immune evasion and virulence, Nature, 497, 254, 10.1038/nature12048
Hirano, 2016, Structure and engineering of Francisella novicida Cas9, Cell, 164, 950, 10.1016/j.cell.2016.01.039
Hale, 2009, RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex, Cell, 139, 945, 10.1016/j.cell.2009.07.040
Hale, 2012, Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs, Mol. Cell, 45, 292, 10.1016/j.molcel.2011.10.023
Zetsche, 2015, Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system, Cell, 163, 759, 10.1016/j.cell.2015.09.038
Yamano, 2016, Crystal structure of Cpf1 in complex with guide RNA and target DNA, Cell, 165, 949, 10.1016/j.cell.2016.04.003
Dong, 2016, The crystal structure of Cpf1 in complex with CRISPR RNA, Nature, 532, 522, 10.1038/nature17944
Fonfara, 2016, The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA, Nature, 532, 517, 10.1038/nature17945
Abudayyeh, 2016, C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector, Science, 353, aaf5573, 10.1126/science.aaf5573
Ran, 2013, Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity, Cell, 154, 1380, 10.1016/j.cell.2013.08.021
Komor, 2016, Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage, Nature, 533, 420, 10.1038/nature17946
Qi, 2013, Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression, Cell, 152, 1173, 10.1016/j.cell.2013.02.022
Peters, 2016, A comprehensive, CRISPR-based functional analysis of essential genes in bacteria, Cell, 165, 1493, 10.1016/j.cell.2016.05.003
Gilbert, 2013, CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes, Cell, 154, 442, 10.1016/j.cell.2013.06.044
Gilbert, 2014, Genome-scale CRISPR-mediated control of gene repression and activation, Cell, 159, 647, 10.1016/j.cell.2014.09.029
Konermann, 2015, Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex, Nature, 517, 583, 10.1038/nature14136
Larson, 2013, CRISPR interference (CRISPRi) for sequence-specific control of gene expression, Nat. Protoc., 8, 2180, 10.1038/nprot.2013.132
Zhao, 2014, Sequence-specific inhibition of microRNA via CRISPR/CRISPRi system, Sci. Rep., 4, 3943, 10.1038/srep03943
Perez-Pinera, 2013, RNA-guided gene activation by CRISPR-Cas9-based transcription factors, Nat. Methods, 10, 973, 10.1038/nmeth.2600
Cheng, 2013, Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system, Cell Res., 23, 1163, 10.1038/cr.2013.122
Tanenbaum, 2014, A protein-tagging system for signal amplification in gene expression and fluorescence imaging, Cell, 159, 635, 10.1016/j.cell.2014.09.039
Chavez, 2015, Highly efficient Cas9-mediated transcriptional programming, Nat. Methods, 12, 326, 10.1038/nmeth.3312
Chavez, 2016, Comparison of Cas9 activators in multiple species, Nat. Methods, 13, 563, 10.1038/nmeth.3871
Zalatan, 2015, Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds, Cell, 160, 339, 10.1016/j.cell.2014.11.052
Hilton, 2015, Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers, Nat. Biotechnol., 33, 510, 10.1038/nbt.3199
Kearns, 2015, Functional annotation of native enhancers with a Cas9-histone demethylase fusion, Nat. Methods, 12, 401, 10.1038/nmeth.3325
Thakore, 2015, Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements, Nat. Methods, 12, 1143, 10.1038/nmeth.3630
Vojta, 2016, Repurposing the CRISPR-Cas9 system for targeted DNA methylation, Nucleic. Acids Res., 44, 5615, 10.1093/nar/gkw159
Kearns, 2014, Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells, Development, 141, 219, 10.1242/dev.103341
Shi, 2015, Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains, Nat. Biotechnol., 33, 661, 10.1038/nbt.3235
Korkmaz, 2016, Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9, Nat. Biotechnol., 34, 192, 10.1038/nbt.3450
Shalem, 2014, Genome-scale CRISPR-Cas9 knockout screening in human cells, Science, 343, 84, 10.1126/science.1247005
Bernstein, 2006, A bivalent chromatin structure marks key developmental genes in embryonic stem cells, Cell, 125, 315, 10.1016/j.cell.2006.02.041
Zhou, 2014, High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells, Nature, 509, 487, 10.1038/nature13166
Chen, 2015, Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis, Cell, 160, 1246, 10.1016/j.cell.2015.02.038
Parnas, 2015, A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks, Cell, 162, 675, 10.1016/j.cell.2015.06.059
Wong, 2016, Multiplexed barcoded CRISPR-Cas9 screening enabled by CombiGEM, Proc. Natl. Acad. Sci. U.S.A., 113, 2544, 10.1073/pnas.1517883113
Evers, 2016, CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes, Nat. Biotechnol., 34, 631, 10.1038/nbt.3536
Morgens, 2016, Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes, Nat. Biotechnol., 34, 634, 10.1038/nbt.3567
Lane, 2015, Enzymatically generated CRISPR libraries for genome labeling and screening, Dev Cell, 34, 373, 10.1016/j.devcel.2015.06.003
Friedland, 2013, Heritable genome editing in C. elegans via a CRISPR-Cas9 system, Nat. Methods, 10, 741, 10.1038/nmeth.2532
Bassett, 2013, Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system, Cell Rep., 4, 220, 10.1016/j.celrep.2013.06.020
Jao, 2013, Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system, Proc. Natl. Acad. Sci. U.S.A., 110, 13904, 10.1073/pnas.1308335110
Chang, 2013, Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos, Cell Res., 23, 465, 10.1038/cr.2013.45
Li, 2013, Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems, Nat. Biotechnol., 31, 684, 10.1038/nbt.2652
Lv, 2016, Efficient generation of myostatin gene mutated rabbit by CRISPR/Cas9, Sci. Rep., 6, 25029, 10.1038/srep25029
Yan, 2014, Generation of multi-gene knockout rabbits using the Cas9/gRNA system, Cell Regen. (Lond)., 3, 12
Wang, 2015, Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system, Sci. Rep., 5, 13878, 10.1038/srep13878
Crispo, 2015, Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes, PLoS ONE, 10, e0136690, 10.1371/journal.pone.0136690
Zou, 2015, Generation of gene-target dogs using CRISPR/Cas9 system, J. Mol. Cell Biol., 7, 580, 10.1093/jmcb/mjv061
Wang, 2015, Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 System, Sci. Rep., 5, 16623, 10.1038/srep16623
Niu, 2014, Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos, Cell, 156, 836, 10.1016/j.cell.2014.01.027
Wang, 2013, One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering, Cell, 153, 910, 10.1016/j.cell.2013.04.025
Yang, 2013, One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering, Cell, 154, 1370, 10.1016/j.cell.2013.08.022
Platt, 2014, CRISPR-Cas9 knockin mice for genome editing and cancer modeling, Cell, 159, 440, 10.1016/j.cell.2014.09.014
Chiou, 2015, Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing, Genes. Dev., 29, 1576, 10.1101/gad.264861.115
Swiech, 2015, In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9, Nat. Biotechnol., 33, 102, 10.1038/nbt.3055
Sanchez-Rivera, 2014, Rapid modelling of cooperating genetic events in cancer through somatic genome editing, Nature, 516, 428, 10.1038/nature13906
Xue, 2014, CRISPR-mediated direct mutation of cancer genes in the mouse liver, Nature, 514, 380, 10.1038/nature13589
Lanctot, 2007, Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions, Nat. Rev. Genet., 8, 104, 10.1038/nrg2041
Chen, 2013, Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system, Cell, 155, 1479, 10.1016/j.cell.2013.12.001
Anton, 2014, Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system, Nucleus, 5, 163, 10.4161/nucl.28488
Ma, 2015, Multicolor CRISPR labeling of chromosomal loci in human cells, Proc. Natl. Acad. Sci. U.S.A., 112, 3002, 10.1073/pnas.1420024112
Deng, 2015, CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells, Proc. Natl. Acad. Sci. U.S.A., 112, 11870, 10.1073/pnas.1515692112
Ratz, 2015, CRISPR/Cas9-mediated endogenous protein tagging for RESOLFT super–resolution microscopy of living human cells, Sci. Rep., 5, 9592, 10.1038/srep09592
Kamiyama, 2016, Versatile protein tagging in cells with split fluorescent protein, Nat. Commun., 7, 11046, 10.1038/ncomms11046
Nelles, 2016, Programmable RNA tracking in live cells with CRISPR/Cas9, Cell, 165, 488, 10.1016/j.cell.2016.02.054
McKenna, 2016, Whole-organism lineage tracing by combinatorial and cumulative genome editing, Science, 353, aaf7907, 10.1126/science.aaf7907
Shipman, 2016, Molecular recordings by directed CRISPR spacer acquisition, Science, 353, aaf1175, 10.1126/science.aaf1175
Maddalo, 2014, In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system, Nature, 516, 423, 10.1038/nature13902
Choi, 2014, Targeted genomic rearrangements using CRISPR/Cas technology, Nat. Commun., 5, 3728, 10.1038/ncomms4728
Hsu, 2013, DNA targeting specificity of RNA-guided Cas9 nucleases, Nat. Biotechnol., 31, 827, 10.1038/nbt.2647
Fu, 2013, High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells, Nat. Biotechnol., 31, 822, 10.1038/nbt.2623
Crosetto, 2013, Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing, Nat. Methods, 10, 361, 10.1038/nmeth.2408
Tsai, 2015, GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases, Nat. Biotechnol., 33, 187, 10.1038/nbt.3117
Guilinger, 2014, Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification, Nat. Biotechnol., 32, 577, 10.1038/nbt.2909
Tsai, 2014, Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing, Nat. Biotechnol., 32, 569, 10.1038/nbt.2908
Fu, 2014, Improving CRISPR-Cas nuclease specificity using truncated guide RNAs, Nat. Biotechnol., 32, 279, 10.1038/nbt.2808
Davis, 2015, Small molecule-triggered Cas9 protein with improved genome-editing specificity, Nat. Chem. Biol., 11, 316, 10.1038/nchembio.1793
Slaymaker, 2016, Rationally engineered Cas9 nucleases with improved specificity, Science, 351, 84, 10.1126/science.aad5227
Kleinstiver, 2016, High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects, Nature, 529, 490, 10.1038/nature16526
Plevock, 2015, Newly characterized region of CP190 associates with microtubules and mediates proper spindle morphology in Drosophila stem cells, PLoS ONE, 10, e0144174, 10.1371/journal.pone.0144174
Bhattacharjee, 2016, Activity of Menkes Disease protein ATP7A is essential for redox balance in mitochondria, J. Biol. Chem., 291, 16644, 10.1074/jbc.M116.727248
Popow, 2015, FASTKD2 is an RNA-binding protein required for mitochondrial RNA processing and translation, RNA, 21, 1873, 10.1261/rna.052365.115
Claussnitzer, 2015, FTO obesity variant circuitry and adipocyte browning in humans, N. Engl. J. Med., 373, 895, 10.1056/NEJMoa1502214
Birsoy, 2015, An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis, Cell, 162, 540, 10.1016/j.cell.2015.07.016
D’Osualdo, 2015, Transcription factor ATF4 induces NLRP1 inflammasome expression during endoplasmic reticulum stress, PLoS ONE, 10, e0130635, 10.1371/journal.pone.0130635
Plumb, 2015, A functional link between the co-translational protein translocation pathway and the UPR, Elife, 4, e07426, 10.7554/eLife.07426
Schoborg, 2015, An Asp-CaM complex is required for centrosome-pole cohesion and centrosome inheritance in neural stem cells, J. Cell Biol., 211, 987, 10.1083/jcb.201509054
Li, 2015, Glycosylation inhibition reduces cholesterol accumulation in NPC1 protein-deficient cells, Proc. Natl. Acad. Sci. U.S.A., 112, 14876, 10.1073/pnas.1520490112
Fuchs, 2015, Kinetic pathway of 40S ribosomal subunit recruitment to hepatitis C virus internal ribosome entry site, Proc. Natl. Acad. Sci. U.S.A., 112, 319, 10.1073/pnas.1421328111
Virreira Winter, 2016, Genome-wide CRISPR screen reveals novel host factors required for Staphylococcus aureus alpha-hemolysin-mediated toxicity, Sci. Rep., 6, 24242, 10.1038/srep24242