Applications of CRISPR Genome Engineering in Cell Biology

Trends in Cell Biology - Tập 26 - Trang 875-888 - 2016
Fangyuan Wang1, Lei S. Qi2,3,4
1Sino-U.S. Center of Synthetic Biology, Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
2Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
3Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
4ChEM-H, Stanford University, Stanford, CA 94305, USA

Tài liệu tham khảo

Capecchi, 1989, Altering the genome by homologous recombination, Science, 244, 1288, 10.1126/science.2660260 Rudin, 1989, Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae, Genetics, 122, 519, 10.1093/genetics/122.3.519 Bibikova, 2001, Stimulation of homologous recombination through targeted cleavage by chimeric nucleases, Mol. Cell Biol., 21, 289, 10.1128/MCB.21.1.289-297.2001 Bibikova, 2002, Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases, Genetics, 161, 1169, 10.1093/genetics/161.3.1169 Urnov, 2005, Highly efficient endogenous human gene correction using designed zinc-finger nucleases, Nature, 435, 646, 10.1038/nature03556 Christian, 2010, Targeting DNA double-strand breaks with TAL effector nucleases, Genetics, 186, 757, 10.1534/genetics.110.120717 Gaj, 2013, ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering, Trends Biotechnol., 31, 397, 10.1016/j.tibtech.2013.04.004 Wolfe, 2000, DNA recognition by Cys2His2 zinc finger proteins, Annu. Rev. Biophys. Biomol. Struct., 29, 183, 10.1146/annurev.biophys.29.1.183 Beerli, 2002, Engineering polydactyl zinc-finger transcription factors, Nat. Biotechnol., 20, 135, 10.1038/nbt0202-135 Konermann, 2013, Optical control of mammalian endogenous transcription and epigenetic states, Nature, 500, 472, 10.1038/nature12466 Zhang, 2011, Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription, Nat. Biotechnol., 29, 149, 10.1038/nbt.1775 Maeder, 2013, CRISPR RNA-guided activation of endogenous human genes, Nat. Methods, 10, 977, 10.1038/nmeth.2598 Wiedenheft, 2012, RNA-guided genetic silencing systems in bacteria and archaea, Nature, 482, 331, 10.1038/nature10886 Marraffini, 2010, CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea, Nat. Rev. Genet., 11, 181, 10.1038/nrg2749 Nakata, 1982, Cloning of alkaline phosphatase isozyme gene (iap) of Escherichia coli, Gene, 19, 313, 10.1016/0378-1119(82)90021-X Barrangou, 2007, CRISPR provides acquired resistance against viruses in prokaryotes, Science, 315, 1709, 10.1126/science.1138140 Brouns, 2008, Small CRISPR RNAs guide antiviral defense in prokaryotes, Science, 321, 960, 10.1126/science.1159689 Jinek, 2012, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, 337, 816, 10.1126/science.1225829 Deltcheva, 2011, CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III, Nature, 471, 602, 10.1038/nature09886 Sapranauskas, 2011, The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli, Nucleic. Acids Res., 39, 9275, 10.1093/nar/gkr606 Marraffini, 2010, Self versus non-self discrimination during CRISPR RNA-directed immunity, Nature, 463, 568, 10.1038/nature08703 Cong, 2013, Multiplex genome engineering using CRISPR/Cas systems, Science, 339, 819, 10.1126/science.1231143 Mali, 2013, RNA-guided human genome engineering via Cas9, Science, 339, 823, 10.1126/science.1232033 Jinek, 2013, RNA-programmed genome editing in human cells, Elife, 2, e00471, 10.7554/eLife.00471 Hwang, 2013, Efficient genome editing in zebrafish using a CRISPR-Cas system, Nat. Biotechnol., 31, 227, 10.1038/nbt.2501 Cho, 2013, Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease, Nat. Biotechnol., 31, 230, 10.1038/nbt.2507 Makarova, 2015, An updated evolutionary classification of CRISPR-Cas systems, Nat. Rev. Microbiol., 13, 722, 10.1038/nrmicro3569 Chylinski, 2014, Classification and evolution of type II CRISPR-Cas systems, Nucleic. Acids Res., 42, 6091, 10.1093/nar/gku241 Gasiunas, 2012, Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria, Proc. Natl. Acad. Sci. U.S.A., 109, E2579, 10.1073/pnas.1208507109 Ran, 2015, In vivo genome editing using Staphylococcus aureus Cas9, Nature, 520, 186, 10.1038/nature14299 Zhang, 2013, Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis, Mol. Cell, 50, 488, 10.1016/j.molcel.2013.05.001 Mali, 2013, CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering, Nat. Biotechnol., 31, 833, 10.1038/nbt.2675 Sampson, 2013, A CRISPR/Cas system mediates bacterial innate immune evasion and virulence, Nature, 497, 254, 10.1038/nature12048 Hirano, 2016, Structure and engineering of Francisella novicida Cas9, Cell, 164, 950, 10.1016/j.cell.2016.01.039 Hale, 2009, RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex, Cell, 139, 945, 10.1016/j.cell.2009.07.040 Hale, 2012, Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs, Mol. Cell, 45, 292, 10.1016/j.molcel.2011.10.023 Zetsche, 2015, Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system, Cell, 163, 759, 10.1016/j.cell.2015.09.038 Yamano, 2016, Crystal structure of Cpf1 in complex with guide RNA and target DNA, Cell, 165, 949, 10.1016/j.cell.2016.04.003 Dong, 2016, The crystal structure of Cpf1 in complex with CRISPR RNA, Nature, 532, 522, 10.1038/nature17944 Fonfara, 2016, The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA, Nature, 532, 517, 10.1038/nature17945 Abudayyeh, 2016, C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector, Science, 353, aaf5573, 10.1126/science.aaf5573 Ran, 2013, Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity, Cell, 154, 1380, 10.1016/j.cell.2013.08.021 Komor, 2016, Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage, Nature, 533, 420, 10.1038/nature17946 Qi, 2013, Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression, Cell, 152, 1173, 10.1016/j.cell.2013.02.022 Peters, 2016, A comprehensive, CRISPR-based functional analysis of essential genes in bacteria, Cell, 165, 1493, 10.1016/j.cell.2016.05.003 Gilbert, 2013, CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes, Cell, 154, 442, 10.1016/j.cell.2013.06.044 Gilbert, 2014, Genome-scale CRISPR-mediated control of gene repression and activation, Cell, 159, 647, 10.1016/j.cell.2014.09.029 Konermann, 2015, Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex, Nature, 517, 583, 10.1038/nature14136 Larson, 2013, CRISPR interference (CRISPRi) for sequence-specific control of gene expression, Nat. Protoc., 8, 2180, 10.1038/nprot.2013.132 Zhao, 2014, Sequence-specific inhibition of microRNA via CRISPR/CRISPRi system, Sci. Rep., 4, 3943, 10.1038/srep03943 Perez-Pinera, 2013, RNA-guided gene activation by CRISPR-Cas9-based transcription factors, Nat. Methods, 10, 973, 10.1038/nmeth.2600 Cheng, 2013, Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system, Cell Res., 23, 1163, 10.1038/cr.2013.122 Tanenbaum, 2014, A protein-tagging system for signal amplification in gene expression and fluorescence imaging, Cell, 159, 635, 10.1016/j.cell.2014.09.039 Chavez, 2015, Highly efficient Cas9-mediated transcriptional programming, Nat. Methods, 12, 326, 10.1038/nmeth.3312 Chavez, 2016, Comparison of Cas9 activators in multiple species, Nat. Methods, 13, 563, 10.1038/nmeth.3871 Zalatan, 2015, Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds, Cell, 160, 339, 10.1016/j.cell.2014.11.052 Hilton, 2015, Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers, Nat. Biotechnol., 33, 510, 10.1038/nbt.3199 Kearns, 2015, Functional annotation of native enhancers with a Cas9-histone demethylase fusion, Nat. Methods, 12, 401, 10.1038/nmeth.3325 Thakore, 2015, Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements, Nat. Methods, 12, 1143, 10.1038/nmeth.3630 Vojta, 2016, Repurposing the CRISPR-Cas9 system for targeted DNA methylation, Nucleic. Acids Res., 44, 5615, 10.1093/nar/gkw159 Kearns, 2014, Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells, Development, 141, 219, 10.1242/dev.103341 Shi, 2015, Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains, Nat. Biotechnol., 33, 661, 10.1038/nbt.3235 Korkmaz, 2016, Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9, Nat. Biotechnol., 34, 192, 10.1038/nbt.3450 Shalem, 2014, Genome-scale CRISPR-Cas9 knockout screening in human cells, Science, 343, 84, 10.1126/science.1247005 Bernstein, 2006, A bivalent chromatin structure marks key developmental genes in embryonic stem cells, Cell, 125, 315, 10.1016/j.cell.2006.02.041 Zhou, 2014, High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells, Nature, 509, 487, 10.1038/nature13166 Chen, 2015, Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis, Cell, 160, 1246, 10.1016/j.cell.2015.02.038 Parnas, 2015, A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks, Cell, 162, 675, 10.1016/j.cell.2015.06.059 Wong, 2016, Multiplexed barcoded CRISPR-Cas9 screening enabled by CombiGEM, Proc. Natl. Acad. Sci. U.S.A., 113, 2544, 10.1073/pnas.1517883113 Evers, 2016, CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes, Nat. Biotechnol., 34, 631, 10.1038/nbt.3536 Morgens, 2016, Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes, Nat. Biotechnol., 34, 634, 10.1038/nbt.3567 Lane, 2015, Enzymatically generated CRISPR libraries for genome labeling and screening, Dev Cell, 34, 373, 10.1016/j.devcel.2015.06.003 Friedland, 2013, Heritable genome editing in C. elegans via a CRISPR-Cas9 system, Nat. Methods, 10, 741, 10.1038/nmeth.2532 Bassett, 2013, Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system, Cell Rep., 4, 220, 10.1016/j.celrep.2013.06.020 Jao, 2013, Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system, Proc. Natl. Acad. Sci. U.S.A., 110, 13904, 10.1073/pnas.1308335110 Chang, 2013, Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos, Cell Res., 23, 465, 10.1038/cr.2013.45 Li, 2013, Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems, Nat. Biotechnol., 31, 684, 10.1038/nbt.2652 Lv, 2016, Efficient generation of myostatin gene mutated rabbit by CRISPR/Cas9, Sci. Rep., 6, 25029, 10.1038/srep25029 Yan, 2014, Generation of multi-gene knockout rabbits using the Cas9/gRNA system, Cell Regen. (Lond)., 3, 12 Wang, 2015, Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system, Sci. Rep., 5, 13878, 10.1038/srep13878 Crispo, 2015, Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes, PLoS ONE, 10, e0136690, 10.1371/journal.pone.0136690 Zou, 2015, Generation of gene-target dogs using CRISPR/Cas9 system, J. Mol. Cell Biol., 7, 580, 10.1093/jmcb/mjv061 Wang, 2015, Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 System, Sci. Rep., 5, 16623, 10.1038/srep16623 Niu, 2014, Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos, Cell, 156, 836, 10.1016/j.cell.2014.01.027 Wang, 2013, One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering, Cell, 153, 910, 10.1016/j.cell.2013.04.025 Yang, 2013, One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering, Cell, 154, 1370, 10.1016/j.cell.2013.08.022 Platt, 2014, CRISPR-Cas9 knockin mice for genome editing and cancer modeling, Cell, 159, 440, 10.1016/j.cell.2014.09.014 Chiou, 2015, Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing, Genes. Dev., 29, 1576, 10.1101/gad.264861.115 Swiech, 2015, In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9, Nat. Biotechnol., 33, 102, 10.1038/nbt.3055 Sanchez-Rivera, 2014, Rapid modelling of cooperating genetic events in cancer through somatic genome editing, Nature, 516, 428, 10.1038/nature13906 Xue, 2014, CRISPR-mediated direct mutation of cancer genes in the mouse liver, Nature, 514, 380, 10.1038/nature13589 Lanctot, 2007, Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions, Nat. Rev. Genet., 8, 104, 10.1038/nrg2041 Chen, 2013, Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system, Cell, 155, 1479, 10.1016/j.cell.2013.12.001 Anton, 2014, Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system, Nucleus, 5, 163, 10.4161/nucl.28488 Ma, 2015, Multicolor CRISPR labeling of chromosomal loci in human cells, Proc. Natl. Acad. Sci. U.S.A., 112, 3002, 10.1073/pnas.1420024112 Deng, 2015, CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells, Proc. Natl. Acad. Sci. U.S.A., 112, 11870, 10.1073/pnas.1515692112 Ratz, 2015, CRISPR/Cas9-mediated endogenous protein tagging for RESOLFT super–resolution microscopy of living human cells, Sci. Rep., 5, 9592, 10.1038/srep09592 Kamiyama, 2016, Versatile protein tagging in cells with split fluorescent protein, Nat. Commun., 7, 11046, 10.1038/ncomms11046 Nelles, 2016, Programmable RNA tracking in live cells with CRISPR/Cas9, Cell, 165, 488, 10.1016/j.cell.2016.02.054 McKenna, 2016, Whole-organism lineage tracing by combinatorial and cumulative genome editing, Science, 353, aaf7907, 10.1126/science.aaf7907 Shipman, 2016, Molecular recordings by directed CRISPR spacer acquisition, Science, 353, aaf1175, 10.1126/science.aaf1175 Maddalo, 2014, In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system, Nature, 516, 423, 10.1038/nature13902 Choi, 2014, Targeted genomic rearrangements using CRISPR/Cas technology, Nat. Commun., 5, 3728, 10.1038/ncomms4728 Hsu, 2013, DNA targeting specificity of RNA-guided Cas9 nucleases, Nat. Biotechnol., 31, 827, 10.1038/nbt.2647 Fu, 2013, High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells, Nat. Biotechnol., 31, 822, 10.1038/nbt.2623 Crosetto, 2013, Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing, Nat. Methods, 10, 361, 10.1038/nmeth.2408 Tsai, 2015, GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases, Nat. Biotechnol., 33, 187, 10.1038/nbt.3117 Guilinger, 2014, Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification, Nat. Biotechnol., 32, 577, 10.1038/nbt.2909 Tsai, 2014, Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing, Nat. Biotechnol., 32, 569, 10.1038/nbt.2908 Fu, 2014, Improving CRISPR-Cas nuclease specificity using truncated guide RNAs, Nat. Biotechnol., 32, 279, 10.1038/nbt.2808 Davis, 2015, Small molecule-triggered Cas9 protein with improved genome-editing specificity, Nat. Chem. Biol., 11, 316, 10.1038/nchembio.1793 Slaymaker, 2016, Rationally engineered Cas9 nucleases with improved specificity, Science, 351, 84, 10.1126/science.aad5227 Kleinstiver, 2016, High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects, Nature, 529, 490, 10.1038/nature16526 Plevock, 2015, Newly characterized region of CP190 associates with microtubules and mediates proper spindle morphology in Drosophila stem cells, PLoS ONE, 10, e0144174, 10.1371/journal.pone.0144174 Bhattacharjee, 2016, Activity of Menkes Disease protein ATP7A is essential for redox balance in mitochondria, J. Biol. Chem., 291, 16644, 10.1074/jbc.M116.727248 Popow, 2015, FASTKD2 is an RNA-binding protein required for mitochondrial RNA processing and translation, RNA, 21, 1873, 10.1261/rna.052365.115 Claussnitzer, 2015, FTO obesity variant circuitry and adipocyte browning in humans, N. Engl. J. Med., 373, 895, 10.1056/NEJMoa1502214 Birsoy, 2015, An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis, Cell, 162, 540, 10.1016/j.cell.2015.07.016 D’Osualdo, 2015, Transcription factor ATF4 induces NLRP1 inflammasome expression during endoplasmic reticulum stress, PLoS ONE, 10, e0130635, 10.1371/journal.pone.0130635 Plumb, 2015, A functional link between the co-translational protein translocation pathway and the UPR, Elife, 4, e07426, 10.7554/eLife.07426 Schoborg, 2015, An Asp-CaM complex is required for centrosome-pole cohesion and centrosome inheritance in neural stem cells, J. Cell Biol., 211, 987, 10.1083/jcb.201509054 Li, 2015, Glycosylation inhibition reduces cholesterol accumulation in NPC1 protein-deficient cells, Proc. Natl. Acad. Sci. U.S.A., 112, 14876, 10.1073/pnas.1520490112 Fuchs, 2015, Kinetic pathway of 40S ribosomal subunit recruitment to hepatitis C virus internal ribosome entry site, Proc. Natl. Acad. Sci. U.S.A., 112, 319, 10.1073/pnas.1421328111 Virreira Winter, 2016, Genome-wide CRISPR screen reveals novel host factors required for Staphylococcus aureus alpha-hemolysin-mediated toxicity, Sci. Rep., 6, 24242, 10.1038/srep24242