Application potential of paratellurite and iodic acid crystals for acousto-optics in the Terahertz range

Allerton Press - Tập 25 - Trang 114-118 - 2017
E. A. Dyakonov1, I. E. Spektor2, V. B. Voloshinov1, V. D. Travkin2, D. L. Porokhovnichenko1, G. A. Komandin2
1Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
2Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

The possibility of applying paratellurite, iodic acid, and lithium iodate crystals in acousto-optics in the THz range has been investigated. The transparency windows of these crystals and their refractive indices in the THz range have been determined. The acousto-optic figures of merit of these materials are calculated for different acousto-optic interaction geometries.

Tài liệu tham khảo

V. I. Balakshy, V. N. Parygin, and L. E. Chirkov, Physical Principles of Acousto-Optics (Radio i Svyaz’, Moscow, 1985) [in Russian]. V. B. Voloshinov and N. Gupta, “Acousto-Optic Imaging in the Mid-Infrared Region of the Spectrum,” Proc. SPIE. 3900, 62 (1999). E. Bründermann, H. W. Hübers, and M. F. Kimmitt, Terahertz Techniques (Springer, Berlin, 2012). V. L. Bratman, A. G. Litvak, and E. V. Suvorov, “Mastering the Terahertz Domain: Sources and Applications,” Phys. -Usp. 54(8), 837 (2011). T. Vogel and G. Dodel, “Acousto-OpticModulation in the Far-Infrared,” Infrared Phys. 25(1-2), 315 (1985). W. Dürr and W. Schmidt, “Measurement of Acousto-Optic Interaction in Germanium in the Far Infrared,” Int. J. Infrared Millimeter Waves. 6(10), 1043 (1985). V. B. Voloshinov, P. A. Nikitin, V. V. Gerasimov, B. A. Knyazev, and Yu. Yu. Choporova, “Deflection of a Monochromatic THz Beam by Acousto-Optic Methods,” Quantum Electron. 43(12), 1139 (2013). D. L. Porokhovnichenko, E. A. Dyakonov, and V. B. Voloshinov, “Conditions for Obtaining Backward Collinear Isotropic Acousto-Optic Interaction in Germanium and Iodic Acid Crystals,” Bull. Russ. Acad. Sci. Phys. 80(2), 202 (2016). G. Kozlov and A. Volkov, “Coherent Source Submillimeter Wave Spectroscopy,” Top. Appl. Phys. 74, 51 (1998). Acoustic Crystals: A Handbook, Ed. by M. P. Shaskol’skaya (Nauka, Moscow, 1982) [in Russian]. D. M. Korn, A. S. Pine, G. Dresselhaus, and B. Reed, “Infrared Reflectivity of Paratellurite, TeO2,” Phys. Rev. B. 8(2), 768 (1973). M. I. Karaman, V. A. Lichman, V. P. Mushinskii, amd Yu. M. Smirnov, “Dispersion of the Optical Constants of Paratellurite Crystals,” J. Appl. Spectrosc. 49(5), 1188 (1988). M. Unferdorben, A. Buzady, J. Hebling, K. Kiss, I. Hajdara, L. Kovács, Á. Péter, and L. Pálfalvi, “Index of Refraction and Absorption Coefficient Spectra of Paratellurite in the Terahertz Region,” J. Infrared, Millimeter and TerahertzWaves. 37(7), 703 (2016). E. A. Dyakonov, V. B. Voloshinov, and N. V. Polikarpova, “Semicollinear Diffraction of Light by Ultrasound in a Medium with Strong Elastic Anisotropy,” Opt. Spectrosc. 118(1), 166 (2015). C. R. Becker and G. Nath, “Optical Properties of LiIO3 in the Far Infrared,” J. Appl. Phys. 41(10), 3928 (1970).