Application of wavelet-artificial intelligence hybrid models for water quality prediction: a case study in Aji-Chay River, Iran

Springer Science and Business Media LLC - Tập 30 Số 7 - Trang 1797-1819 - 2016
Rahim Barzegar1, Jan Adamowski2, Asghar Asghari Moghaddam1
1Department of Earth Sciences, University of Tabriz, 29 Bahman Boulevard, Tabriz, Iran
2Department of Bioresource Engineering, McGill University, 21111 Lakeshore Rd., Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abdulshahed AM, Longstaff AP, Fletcher S (2015) The application of ANFIS prediction models for thermal error compensation on CNC machine tools. Appl Soft Comput 27:158–168. doi: 10.1016/j.asoc.2014.11.012

Adamowski JF (2008) Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis. J Hydrol 353(3–4):247–266. doi: 10.1016/j.jhydrol.2008.02.013

Adamowski JF, Chan HG (2011) A wavelet neural network conjunction model for groundwater level forecasting. J Hydrol 407(1–4):28–40. doi: 10.1016/j.jhydrol.2011.06.013

Adamowski JF, Sun K (2010) Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. J Hydrol 390(1–2):85–91. doi: 10.1016/j.jhydrol.2010.06.033

Adamowski K, Prokoph A, Adamowski J (2009) Development of a new method of wavelet aided trend detection and estimation. Hydrol Process 23:2686–2696

Adamowski J, Adamowski K, Bougadis J (2010) Influence of trend on short duration design storms. Water Resour Manage 24:401–413

Adamowski J, Prokoph A, Adamowski K (2012a) Influence of the 11 year solar cycle on annual streamflow maxima in Southern Canada. J Hydrol 442:55–62

Adamowski J, Chan H, Prasher S, Sharda VN (2012b) Comparison of multivariate adaptive regression splines with coupled wavelet transform artificial neural networks for runoff forecasting in Himalayan micro-watersheds with limited data. J Hydroinf 3:731–744

Ahuja N, Lertrattanapanich S, Bose NK (2005) Properties determining choice of mother wavelet. IEEE Proc is Image Signal Process 152(5):659–664. doi: 10.1049/ip-vis:20045034

Akansu A, Haddad R (1992) Multi-resolution signal decomposition: transforms, wavelets. Academic Press Inc, Orlando

Anctil F, Tape D (2004) An exploration of artificial neural network rainfall–runoff forecasting combined with wavelet decomposition. J Environ Eng Sci 3(Suppl.):S121–S128. doi: 10.1139/s03-071

Araghi A, Adamowski J, Nalley D, Malard J (2015) Using wavelet transforms to estimate surface temperature trends and dominant periodicities in Iran based on gridded reanalysis data. J Atmos Res 11:52–72

Asghri Moghaddam A, Allaf Najib M (2006) Hydrogeologic characteristics of the alluvial tuff aquifer of northern Sahand Mountain slopes, Tabriz. Iran. Hydrogeol J 14(7):1319–1329. doi: 10.1007/s10040-006-0036-1

Aussem A, Campbell J, Murtagh F (1998) Wavelet-based feature extraction and decomposition strategies for financial forecasting. J Comp Intel Fin. 6(2):5–12

Barzegar R (2014) The investigation of quantitative and qualitative of the Tabriz plain aquifer groundwater resources. MSc. Thesis. Dept. Natural Sciences, University of Tabriz

Barzegar R, Asghari Moghaddam A, Kazemian N (2015a) Assessment of heavy metals concentrations with emphasis on arsenic in the Tabriz plain aquifers, Iran. Environ Earth Sci 74(1):297–313. doi: 10.1007/s12665-015-4123-2

Barzegar R, Asghari Moghaddam A, Najib M, Kazemian N, Adamowski J (2015b) Characterization of hydrogeologic properties of the Tabriz plain multilayer aquifer system, NW Iran. Arab J Geosci. doi: 10.1007/s12517-015-2229-1

Belayneh A, Adamowski J, Khalil B, Ozga-Zielinski B (2014) Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet-support vector regression models. J Hydrol 508:418–429

Borgonovo E, Plischke E (2015) Sensitivity analysis: a review of recent advances. Eur J Oper Res 248(3):869–887. doi: 10.1016/j.ejor.2015.06.032

Butler C, Adamowski J (2015) Empowering marginalized communities in water resources management: addressing inequitable practices in Participatory Model Building. J Environ Manag 153:153–162

Campisi S, Adamowski J, Oron G (2012) Forecasting urban water demand via wavelet- denoising and neural network models. Case study: city of Syracuse, Italy. Water Resour Manag 26:3539–3558

Cannas B, Fanni A, See L, Sias G (2006) Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning. Phys Chem Earth 31(18):1164–1171. doi: 10.1016/j.pce.2006.03.020

Chiu SL (1994) Fuzzy model identification based on cluster estimation. J Intell Fuzz Sys 2(3):267–278. doi: 10.3233/IFS-1994-2306

Cho KH, Sthiannopkao S, Pachepsky YA, Kim KW, Kim JH (2011) Prediction of contamination potential of groundwater arsenic in Cambodia, Laos, and Thailand using artificial neural network. Water Res 45(17):5535–5544. doi: 10.1016/j.watres.2011.08.010

Christopoulou EB, Skodras AN, Georgakilas AA (2002) The ‘‘A Trous’’ wavelet transform versus classical methods for the improvement of solar images. In: Proceedings of the 14th international conference on digital signal processing, vol 2, Santorini, Greece, 1–3, July 2002, pp 885–888

Dawson CW, Wilby RL (2001) Hydrological modelling using artificial neural networks. Prog Phys Geogr 25(1):80–108. doi: 10.1177/030913330102500104

De Giorgi MG, Congedo PM, Malvoni M, Laforgia D (2015) Error analysis of hybrid photovoltaic power forecasting models: a case study of mediterranean climate. Energy Convers Manag 100:117–130. doi: 10.1016/j.enconman.2015.04.078

Einax JW, Aulinger A, Tumpling WV, Prange A (1999) Quantitative description of element concentrations in longitudinal river profiles by multiway PLS models. Fresenius’ J Anal Chem 363(7):655–661. doi: 10.1007/s002160051267

Elhatip H, Kömür MA (2008) Evaluation of water quality parameters for the Mamasin dam in Aksaray City in the central Anatolian part of Turkey by means of artificial neural networks. Environ Geol 53(6):1157–1164. doi: 10.1007/s00254-007-0705-y

Emamgholizadeh S, Kashi H, Marofpoor I, Zalaghi E (2014) Prediction of water quality parameters of Karoon River (Iran) by artificial intelligence-based models. Int J Environ Sci Tech 11(3):645–656. doi: 10.1007/s13762-013-0378-x

Fijani E, Nadiri AA, Asghari Moghaddam A, Tsai F, Dixon B (2013) Optimization of DRASTIC method by supervised committee machine artificial intelligence to assess groundwater vulnerability for Maragheh-Bonab Plain Aquifer, Iran. J Hydrol 503:89–100. doi: 10.1016/j.jhydrol.2013.08.038

Ghavidel SZZ, Montaseri M (2014) Application of different data-driven methods for the prediction of total dissolved solids in the Zarinehroud basin. Stoch Environ Res Risk Assess 28(8):2101–2118. doi: 10.1007/s00477-014-0899-y

Govindaraju RS (2000) Artificial neural networks in hydrology. I, preliminary concepts. J Hydrol Eng 5(2):115–123. doi: 10.1061/(ASCE)1084-0699(2000)5:2(115)

Grossmann A, Morlet J (1984) Decomposition of Hardy function into square integrable wavelets of constant shape. J Math Anal 5:723–736. doi: 10.1137/0515056

Hadad K, Pourahmadi M, Majidi-Maraghi H (2011) Fault diagnosis and classification based on wavelet transform and neural network. Prog Nucl Energy 53(1):41–47. doi: 10.1016/j.pnucene.2010.09.006

Haidary A, Amiri BJ, Adamowski J, Fohrer N, Nakane K (2013) Assessing the impacts of four land use types on the water quality of wetlands in Japan. Water Resour Manag 27:2217–2229

Halbe J, Pahl-Wostl C, Sendzimir J, Adamowski J (2013) Towards adaptive and integrated management paradigms to meet the challenges of water governance. Water Sci Technol 67:2651–2660

Halbe J, Adamowski J, Bennett E, Pahl-Wostl C, Farahbakhsh K (2014) Functional organization analysis for the design of sustainable engineering systems. Ecol Eng 73:80–91

Hernández E, Weiss G (1996) A First Course on Wavelets. CRC Press, Boca Raton

Inam A, Adamowski J, Halbe J, Prasher S (2015) Using causal loop diagrams for the initialization of stakeholder engagement in soil salinity management in agricultural watersheds in developing countries: a case study in the Rechna Doab watershed, Pakistan. J Environ Manag 152:251–267

Jain A, Indurthy SKVP (2003) Comparative analysis of event based rainfall runoff modeling techniques-deterministic, statistical, and artificial neural networks. J Hydraul Eng 8:93–98. doi: 10.1061/(ASCE)1084-0699(2003)8:2(93))

Jang JSR (1993) ANFIS: adaptive network based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685. doi: 10.1109/21.256541

Junsawang P, Asavanant J, Lursinsap C (2007) Artificial Neural Network Model for Rainfall-Runoff Relationship, ASIMMOD, Chiang Mai, Thailand. http://www.mcc.cmu.ac.th/ASIMMOD2007/Paper/C07_P.%20Junsawang.pdf . Accessed 31 Dec 2015

Kant A, Suman PK, Giri BK, Tiwari MK, Chatterjee C, Nayak PC, Kumar S (2013) Comparison of multi-objective evolutionary neural network, adaptive neuro-fuzzy inference system and bootstrap-based neural network for flood forecasting. Neural Comput Appl 23:231–246. doi: 10.1007/s00521-013-1344-8

Karran D, Morin E, Adamowski J (2014) Multi-step streamflow forecasting using data-driven non-linear methods in contrasting climate regimes. J Hydroinf 16(3):671–689

Kirchgässner G, Wolters J, Hassler U (2013) Introduction to modern time series analysis, 2nd edn. Springer, Berlin, p 331

Kişi O (2008) Stream flow forecasting using neuro-wavelet technique. Hydrol Proc 22(20):4142–4152. doi: 10.1002/hyp.7014

Kişi O, Shiri J (2012) Reply to discussion of Precipitation forecasting using wavelet-genetic programming and wavelet-neuro-fuzzy conjunction models. Water Resour Manag 26(12):3663–3665. doi: 10.1007/s11269-012-0060-y

Kolinjivadi V, Adamowski J, Kosoy N (2014) Recasting payments for ecosystem services (PES) in water resource management: a novel institutional approach. Ecosyst Serv 10:144–154

Lau KM, Weng H (1995) Climate signal detection using wavelet transform: how to make a time series sing. Bull Am Meteorol Soc 76(12):2391–2402. doi: 10.1175/1520-477(1995)076<2391:CSDUWT>2.0.CO;2

Maheswaran R, Khosa R (2012a) Comparative study of different wavelets for hydrologic forecasting. Comput Geosci 46:284–295. doi: 10.1016/j.cageo.2011.12.015

Maheswaran R, Khosa R (2012b) Wavelet-Volterra coupled model for monthly stream flow forecasting. J Hydrol 450–451:320–335. doi: 10.1016/j.jhydrol.2012.04.017

Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ Model Softw 15(1):101–124. doi: 10.1016/S1364-8152(99)00007-9

Mallat SG (1998) A wavelet tour of signal processing, 2nd edn. Academic Press, San Diego

Mehrotra K, Mohan CK, Ranka S (1997) Elements of artificial neural networks. The MIT Press, Boston

Mishra AK, Desai VR (2006) Drought forecasting using feed-forward recursive neural network. Ecol Model 198(1–2):127–138. doi: 10.1016/j.ecolmodel.2006.04.017

Moosavi V, Vafakhah M, Shirmohammadi B, Behnia N (2013) A wavelet-ANFIS hybrid model for groundwater level forecasting for different prediction periods. Water Resour Manag 27(5):1301–1321. doi: 10.1007/s11269-012-0239-2

Najah AA, El-Shafie A, Karim OA, Jaafar O (2011) Integrated versus isolated scenario for prediction dissolved oxygen at progression of water quality monitoring stations. Hydrol Earth Syst Sci 15:2693–2708. doi: 10.5194/hess-15-2693-2011

Najah AA, El-Shafie A, Karim OA, Jaafar O (2012) Water quality prediction model utilizing integrated wavelet-ANFIS model with cross-validation. Neural Comput Appl 21(5):833–841. doi: 10.1007/s00521-010-0486-1

Najah A, El-Shafie A, Karim OA, El-Shafie AH (2013) Application of artificial neural networks for water quality prediction. Neural Comput Appl 22(1, Suppl.):187–201. doi: 10.1007/s00521-012-0940-3

Najah A, El-Shafie A, Karim OA, El-Shafie AH (2014) Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring. Environ Sci Pollut Res 21(3):1658–1670. doi: 10.1007/s11356-013-2048-4

Nalley D, Adamowski JF, Khalil B (2012) Using discrete wavelet transforms to analyze trends in streamflow and precipitation in Quebec and Ontario (1954–2008). J Hydrol 475:204–228. doi: 10.1016/j.jhydrol.2012.09.049

Nalley D, Adamowski JF, Khalil B, Ozga-Zielinski B (2013) Trend detection in surface air temperature in Ontario and Quebec, Canada during 1967–2006 using the discrete wavelet transform. Atmos Res 132–133:375–398. doi: 10.1016/j.atmosres.2013.06.011

Nayak PC, Sudheer KP, Ranjan DM, Ramasastri KS (2004) A neuro fuzzy computing technique for modeling hydrological time series. J Hydrol 291:52–66. doi: 10.1016/j.jhydrol.2003.12.010

Nievergelt Y (2001) Wavelets made easy. Birkhäuser, Boston

Noori R, Abdoli MA, Farokhnia A, Abbasi M (2009) Results uncertainty of solid waste generation forecasting by hybrid of wavelet transform-ANFIS and wavelet transform-neural network. Expert Syst Appl 36(6):9991–9999. doi: 10.1016/j.eswa.2008.12.035

Nourani V, Alami MT, Aminfar MH (2009) A combined neural-wavelet model for prediction of watershed precipitation, Lighvanchai, Iran. Eng Appl Artif Intell 22(3):466–472. doi: 10.1016/j.engappai.2008.09.003

Nourani V, Kisi Z, Mehdi K (2011) Two hybrid artificial Intelligence approaches for modeling rainfall-runoff process. J Hydrol 402(1–2):41–59. doi: 10.1016/j.jhydrol.2011.03.002

Nourani V, Hosseini Baghanam A, Adamowski J, Gebremichael M (2013) Using self-organizing maps and wavelet transforms for space–time pre-processing of satellite precipitation and runoff data in neural network based rainfall-runoff modeling. J Hydrol 476:228–243. doi: 10.1016/j.jhydrol.2012.10.054

Nourani V, Hosseini Baghanam A, Adamowski J, Kisi O (2014) Applications of hybrid Wavelet-Artificial Intelligence models in hydrology: a review. J Hydrol 514:358–377. doi: 10.1016/j.jhydrol.2014.03.057

Olkkonen H (2011) Discrete wavelet transform-biomedical application. InTech, Rijeka. doi: 10.5772/1818

Palani S, Liong SY, Tkalich P (2008) An ANN application for water quality forecasting. Marine Pollut Bull 56(9):1586–1597. doi: 10.1016/j.marpolbul.2008.05.021

Parmar KS, Bhardwaj R (2015) River water prediction modeling using neural networks, fuzzy and wavelet coupled model. Water Resour Manag 29(1):17–33. doi: 10.1007/s11269-014-0824-7

Partal T, Kişi Ö (2007) Wavelet and neuro fuzzy conjunction model for precipitation forecasting. J Hydrol 342:199–212. doi: 10.1016/j.jhydrol.2007.05.026

Percival DB, Walden AT (2000) Wavelet methods for time series analysis. Cambridge University Press, New York

Pingale S, Khare D, Jat M, Adamowski J (2014) Spatial and temporal trends of mean and extreme rainfall and temperature for the 33 urban centres of the arid and semi-arid state of Rajasthan, India. J Atmos Res 138:73–90

Rahimikhoob A (2010) Estimation of evapotranspiration based on only air temperature data using artificial neural networks for a subtropical climate in Iran. Theor Appl Climatol 101(1–2):83–91. doi: 10.1007/s00704-009-0204-z

Rajaee T, Mirbagheri SA, Zounemat-Kermani M, Nourani V (2009) Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models. Sci Total Environ 407(17):4916–4927. doi: 10.1016/j.scitotenv.2009.05.016

Rathinasamy M, Adamowski JF, Khosa R (2013) Multiscale streamflow forecasting using a new Bayesian Model Average based ensemble multi-wavelet Volterra nonlinear method. J Hydrol 507:186–200. doi: 10.1016/j.jhydrol.2013.09.025

Rathinasamy M, Khosa R, Adamowski J, Ch S, Partheepan G, Anand J, Narsimlu B (2015) Wavelet-based multiscale performance analysis: an approach to assess and improve hydrological models. Water Resour Res. doi: 10.1002/2013WR014650

Ravansalar M, Rajaee T (2015) Evaluation of wavelet performance via an ANN-based electrical conductivity prediction model. Environ Monit Assess. doi: 10.1007/s10661-015-4590-7

Saadat H, Adamowski J, Bonnell R, Sharifi F, Namdar M, Ale-Ebrahim S (2011) Land use and land cover classification over a large area in Iran based on single date analysis of satellite imagery. J Photogramm Remote Sens 66(5):608–619

Sehgal V, Tiwari MK, Chatterjee C (2014) Wavelet bootstrap multiple linear regression based hybrid modeling for daily river discharge forecasting. Water Resour Manag 28(10):2793–2811. doi: 10.1007/s11269-014-0638-7

Shirmohammadi B, Vafakhah M, Moosavi V, Moghaddamnia A (2013) Application of several data-driven techniques for predicting groundwater level. Water Resour Manag 27(2):419–432. doi: 10.1007/s11269-012-0194-y

Singh KP, Basant A, Malik A, Jain G (2009) Artificial neural network modeling of the river water quality, a case study. Ecol Model 220(6):888–895. doi: 10.1016/j.ecolmodel.2009.01.004

Smith M (1994) Neural networks for statistical modelling. Van Nostrand Reinhold, New York, p 235

Straith D, Adamowski J, Reilly K (2014) Exploring the attributes, strategies and contextual knowledge of champions of change in the Canadian water sector. Can Water Resour J 39(3):255–269

Tiwari M, Adamowski J (2014) Urban water demand forecasting and uncertainty assessment using ensemble wavelet-bootstrap-neural network models. Water Resour Res 49(10):6486–6507

Tiwari M, Adamowski J (2015) Medium-term urban water demand forecasting with limited data using an ensemble wavelet-bootstrap machine-learning approach. J Water Resour Plan Manag 141(2):04014053

Tiwari M, Chatterjee C (2011) new wavelet–bootstrap–ANN hybrid model for daily discharge forecasting. J Hydroinf 13(3):500–519. doi: 10.2166/hydro.2010.142

Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78. doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2

Xu L, Liu S (2013) Study of short-term water quality prediction model based on wavelet neural network. Math Comput Model 58(3–4):807–813. doi: 10.1016/j.mcm.2012.12.023

Yeniguna K, Ecer R (2012) Overlay mapping trend analysis technique and its application in Euphrates Basin, Turkey. Meteorol Appl 20(4):427–438. doi: 10.1002/met.1304

Zounemat-Kermani M, Teshnehlab M (2008) Using adaptive neuro-fuzzy inference system for hydrological time series prediction. Appl Soft Comput 8(2):928–936. doi: 10.1016/j.asoc.2007.07.011