Application of the scale entropy diffusion model to describe a liquid atomization process

International Journal of Multiphase Flow - Tập 35 - Trang 952-962 - 2009
Christophe Dumouchel1, Sébastien Grout1
1CNRS UMR 6614 – CORIA, Université et INSA de Rouen, Avenue de l’Université – BP 12, 76 801 Saint Etienne du Rouvray, France

Tài liệu tham khảo

Bérubé, 1999, High precision boundary fractal analysis for shape characterization, Comput. Geosci., 25, 1059, 10.1016/S0098-3004(99)00067-9 Dumouchel, 2008, On the experimental investigation on primary atomization of liquid stream, Exp. Fluids, 45, 371, 10.1007/s00348-008-0526-0 Dumouchel, 2005, On the role of the liquid flow characteristics on low-Weber-number atomization processes, Exp. Fluids, 38, 637, 10.1007/s00348-005-0944-1 Dumouchel, 2005, Experimental analysis of liquid–gas interface at low-Weber-number: interface length and fractal dimension, Exp. Fluids, 39, 651, 10.1007/s00348-005-1005-5 Dumouchel, 2008, Analysis of two-dimensional liquid spray images: the surface-based scale distribution, J. Flow Visual. Image Process., 15, 59, 10.1615/JFlowVisImageProc.v15.i1.50 Dumouchel, C., Grout, S., Cousin, J., 2008b. Application of surface-based scale distributions to characterize liquid sprays: influence of the liquid properties. In: Proceedings of the ILASS-Europe 2008, September 8–10, Como, Italy, Paper ID ILASS08-A091. Grout, 2007, Fractal analysis of atomizing liquid flows, Int. J. Multiphase Flows, 33, 1023, 10.1016/j.ijmultiphaseflow.2007.02.009 Guessasma, 2003, On the implementation of the fractal concept to quantify thermal spray deposit characteristics, Surf. Coat. Technol., 173, 24, 10.1016/S0257-8972(03)00443-2 Hunt, 1991, Kolmogorov’s contribution to the physical and geometrical understanding of small-scale turbulence and recent developments, Proc. R. Soc. Lond. A, 434, 183, 10.1098/rspa.1991.0088 Kaye, 1989 Le Moyne, 2008, Fractal dimension and scale entropy applications in a spray, Chaos, Solitons & Fractals, 38, 696, 10.1016/j.chaos.2007.01.004 Mandelbrot, 1982 Mansour, 1991, Dynamic behavior of liquid sheets, Phys. Fluids, 3, 2971, 10.1063/1.857839 Panico, 1995, Retinal neurons and vessels are not fractal but space-filling, J. Comp. Neurol., 361, 479, 10.1002/cne.903610311 Queiros-Conde, 1999, Geometry of intermittency in fully developed turbulence, C. R. Acad. Sci. Paris Ser. IIb, 327, 1385 Queiros-Conde, 2000, Entropic skins model in fully developed turbulence, C. R. Acad. Sci. Paris Ser. IIb, 328, 541 Queiros-Conde, 2001, Internal geometry in the multifractal spectrum in fully developed turbulence, Phys. Rev. E, 64, 015301, 10.1103/PhysRevE.64.015301 Queiros-Conde, 2003, A diffusion equation to describe sacle- and time-dependent dimensions of turbulent interfaces, Proc. R. Soc. Lond. A, 459, 3043, 10.1098/rspa.2003.1167 Rizk, N.K., Lefebvre, A.H., 1984. Influence of downstream distance on simplex atomizer spray characteristics, ASME 84-WA/HT-25. Shavit, 1995, Fractal dimensions of liquid jet interface under break-up, Atom. Sprays., 5, 525, 10.1615/AtomizSpr.v5.i6.10 Sreenivasan, 1986, The fractal facets of turbulence, J. Fract. Mech., 173, 357 Yon, 2004, A statistical morphological determination of the growth rate of the interfacial disturbance of an excited Rayleigh jet, J. Flow Visual. Image Process., 11, 1, 10.1615/JFlowVisImageProc.v11.i3.60