Application of the rainbow trout derived intestinal cell line (RTgutGC) for ecotoxicological studies: molecular and cellular responses following exposure to copper

Laura M. Langan1, Glenn M. Harper2, Stewart F. Owen3, Wendy M. Purcell4, Simon K. Jackson4, Awadhesh N. Jha1
1School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
2Electron Microscopy Unit, Faculty of Science and Engineering, University of Plymouth, Plymouth, UK
3AstraZeneca, Macclesfield, UK
4School of Biomedical and Health Care Sciences, University of Plymouth, Plymouth, UK

Tóm tắt

There is an acknowledged need for in vitro fish intestinal model to help understand dietary exposure to chemicals in the aquatic environment. The presence and use of such models is however largely restrictive due to technical difficulties in the culturing of enterocytes in general and the availability of appropriate established cell lines in particular. In this study, the rainbow trout (Oncorhynchus mykiss) intestinal derived cell line (RTgutGC) was used as a surrogate for the “gut sac” method. To facilitate comparison, RTgutGC cells were grown as monolayers (double-seeded) on permeable Transwell supports leading to a two-compartment intestinal model consisting of polarised epithelium. This two-compartment model divides the system into an upper apical (lumen) and a lower basolateral (portal blood) compartment. In our studies, these cells stained weakly for mucosubstances, expressed the tight junction protein ZO-1 in addition to E-cadherin and revealed the presence of polarised epithelium in addition to microvilli protrusions. The cells also revealed a comparable transepithelial electrical resistance (TEER) to the in vivo situation. Importantly, the cell line tolerated apical saline (1:1 ratio) thus mimicking the intact organ to allow assessment of uptake of compounds across the intestine. Following an exposure over 72 h, our study demonstrated that the RTgutGC cell line under sub-lethal concentrations of copper sulphate (Cu) and modified saline solutions demonstrated uptake of the metal with saturation levels comparable to short term ex situ gut sac preparations. Gene expression analysis revealed no significant influence of pH or time on mRNA expression levels of key stress related genes (i.e. CYP3A, GST, mtA, Pgp and SOD) in the Transwell model. However, significant positive correlations were found between all genes investigated suggesting a co-operative relationship amongst the genes studied. When the outlined characteristics of the cell line are combined with the division of compartments, the RTgutGC double seeded model represents a potential animal replacement model for ecotoxicological studies. Overall, this model could be used to study the effects and predict aquatic gastrointestinal permeability of metals and other environmentally relevant contaminants in a cost effective and high throughput manner.

Từ khóa


Tài liệu tham khảo

Acikgöz A, Giri S, Cho M, Bader A (2013) Functional analysis of hepatocyte sperhoids generated on poly-HEMA-treated surfaces under the influence of fetal calf serum and nonparenchymal cells. Biomolecules 3:242–269. doi:10.3390/biom3010242 Alam MA, Al-Jenoobi FI, Al-Mohizea AM (2012) Everted gut sac model as a tool in pharmaceutical research: Limitations and applications. J Pharm Pharmacol 64(3):326–336. doi:10.1111/j.2042-7158.2011.01391.x Anna O, Monika L, Wodzimierz G, Katarzyna C (2003) New rapid method of Caco-2 cell differentiation. Methodol Nov Food Eval Pol J Food Nutr Sci 12(48 61):60–64 Antognelli C, Baldracchini F, Frosini R, Piazzoli A, Talesa V, Giovannini E (2006) Effects of exposure to Scapharca inaequivalvis. Biochem Syst Ecol 34(4):275–281. doi:10.1016/j.bse.2005.11.008 Bailey CA, Bryla P, Malick A (1996) The use of the intestinal epithelial cell culture model, Caco-2, in pharmaceutical development. Adv Drug Deliv Rev 22(1-2):85–103. doi:10.1016/S0169-409X(96)00416-4 Bakke AM, Glover C, Krogdahl Å (2010) Feeding, digestion and absorption of nutrients. In: Grosell M, Farrell AP, Braune CJ (eds) Fish Physiology: The multifunctional Gut of Fish. Academic Press, United States, chap 2, pp 57–110 Baron MG, Purcell WM, Jackson SK, Owen SF, Jha AN (2012) Towards a more representative in vitro method for fish ecotoxicology: morphological and biochemical characterisation of three-dimensional spheroidal hepatocytes. Ecotoxicology 21(8):2419–2429. doi:10.1007/s10646-012-0965-5 Buckley ST, Fischer SM, Fricker G, Brandl M (2012) In vitro models to evaluate the permeability of poorly soluble drug entities: Challenges and perspectives. Eur J Pharm Sci 45(3):235–250. doi:10.1016/j.ejps.2011.12.007 Burden N, Creton S, Weltje L, Maynard SK, Wheeler JR (2014) Reducing the number of fish in bioconcentration studies with general chemicals by reducing the number of test concentrations. Regul Toxicol Pharmacol 70(2):442–445. doi:10.1016/j.yrtph.2014.08.008 Burden N, Benstead R, Clook M, Doyle I, Edwards P, Maynard SK, Ryder K, Sheahan D, Whale G, van Egmond R, Wheeler JR, Hutchinson TH (2015a) Advancing the 3Rs in regulatory ecotoxicology: a pragmatic cross-sector approach. Integr Environ Assess Manag 12(3):417–421. doi:10.1002/ieam.1703 Burden N, Sewell F, Chapman K (2015b) Testing chemical safety: what Is needed to ensure the widespread application of non-animal approaches? PLoS Biol 13(5):1–8. doi:10.1371/journal.pbio.1002156 Bury NR, Jie L, Flik G, Lock RA, Bonga SE (1998) Cortisol protects against copper induced necrosis and promotes apoptosis in fish gill chloride cells in vitro. Aquat Toxicol 40(2-3):193–202. doi:10.1016/S0166-445X(97)00051-9 Castaño A, Bols N, Braunbeck T, Dierickx P, Halder M, Isomma B, Kawahara K, Lee LEJ, Mothersill C, Pärt P, Sintes JR, Rufi H, Smith R, Wood C, Segner H (2003) The use of fish cells in ecotoxicology. Atla Altern to Lab Anim 31(3):317–351 Catherine Tee P, Janice Wong Y, Sherry JP, Bols NC (2011) Effect of acid blue 80, an anthracenedione dye, on rainbow trout liver, gill and gut cells in vitro. Ecotoxicol Environ Saf 74(7):1874–1878. doi:10.1016/j.ecoenv.2011.07.026 Clearwater SJ, Baskin SJ, Wood CM, McDonald DG (2000) Gastrointestinal uptake and distribution of copper in rainbow trout. J Exp Biol 203(16):2455–2466 Dallas LJ, Bean TP, Turner A, Lyons BP, Jha AN (2013) Oxidative DNA damage may not mediate Ni-induced genotoxicity in marine mussels: Assessment of genotoxic biomarkers and transcriptional responses of key stress genes. Mutat Res - Genet Toxicol Environ Mutagen 754(1-2):22–31. doi:10.1016/j.mrgentox.2013.03.009 Dixit P, Jain DK, Dumbwani J (2012) Standardization of an ex vivo method for determination of intestinal permeability of drugs using everted rat intestine apparatus. J Pharmacol Toxicol Methods 65(1):13–17. doi:10.1016/j.vascn.2011.11.001 Donnachie RL, Johnson AC, Sumpter JP (2016) A rational approach to selecting and ranking some pharmaceuticals of concern for the aquatic environment and their relative importance compared with other chemicals. Environ Toxicol Chem 35(4):1021–1027. doi:10.1002/etc.3165 Dowling K, Mothersill C (2001) The further development of rainbow trout primary epithelial cell cultures as a diagnostic tool in ecotoxicology risk assessment. Aquat Toxicol 53(3-4):279–289. doi:10.1016/S0166-445X(01)00172-2 Eisenbrand G, Pool-Zobel B, Baker V, Balls M, Blaauboer BJ, Boobis A, Carere A, Kevekordes S, Lhuguenot JC, Pieters R, Kleiner J (2002) Methods of in vitro toxicology. Food Chem Toxicol 40:193–236. doi:10.1016/S0278-6915(01)00118-1 El-Kattan A, Varm M (2012) Oral absorption, intestinal metabolism and human oral bioavailability. In: Paxton J (ed) Top. Drug Metab., InTech, chap Oral Absor, pp 1–35. doi:10.5772/31087 Fang Y, Yang H, Wang T, Liu B, Zhao H, Chen M (2010) Metallothionein and superoxide dismutase responses to sublethal cadmium exposure in the clam Mactra veneriformis. Comp Biochem Physiol Part C Toxicol Pharmacol 151(3):325–333. doi:10.1016/j.cbpc.2009.12.005 Fard MRS, Weisheit C, Poynton SL (2007) Does pH affect microhabitat preference of the pathogenic diplomonad Spironucleus Salmonis in the intestine of rainbow trout (Oncorhynchus mykiss) ? Dis Aquat Organ 76(May):126–127 Ferruzza S, Rossi C, Scarino ML, Sambuy Y (2012) A protocol for differentiation of human intestinal Caco-2 cells in asymmetric serum-containing medium. Toxicol Vitr pp 8–11, 10.1016/j.tiv.2012.01.008 Fierro-Castro C, Barrioluengo L, López-Fierro P, Razquin B, Carracedo B, Villena AJ (2012) Fish cell cultures as in vitro models of pro-inflammatory responses elicited by immunostimulants. Fish Shellfish Immunol 33(2):289–400. doi:10.106/j.fsi.2012.05.019 Fischer S, Loncar J, Zaja R, Schnell S, Schirmer K, Smital T, Luckenbach T (2011) Constitutive mRNA expression and protein activity levels of nine ABC efflux transporters in seven permanent cell lines derived from different tissues of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 101(2):438–446. doi:10.1016/j.aquatox.2010.11.010 Fletcher M, Kelly SP, Pärt P, O’Donnell MJ, Wood CM (2000) Transport properties of cultured branchial epithelia from freshwater rainbow trout: a novel preparation with mitochondria-rich cells. J Exp Biol 203(Pt 10):1523–1537 Friedrich J, Eder W, Castaneda J, Doss M, Huber E, Ebner R, Kunz-Schughart La (2007) A reliable tool to determine cell viability in complex 3-d culture: the acid phosphatase assay. J Biomol Screen Off J Soc Biomol Screen 12(7):925–937. doi:10.1177/1087057107306839 Friedrich J, Seidel C, Ebner R, Kunz-Schughart La (2009) Spheroid-based drug screen: considerations and practical approach. Nat Protoc 4(3):309–324. doi:10.1038/nprot.2008.226 Fryer JL, Lannan CN (1994) Three decades of fish cell culture: a current listing of cell lines derived from fishes. J Tissue Cult Methods 16(2):87–94. doi:10.1007/BF01404816 Galkin A, Pakkanen J, Vuorela P (2008) Development of an automated 7-day 96-well Caco- 2 cell culture model. Pharmazie 63(6):464–469. doi:10.1691/ph.2008.7855 Gan LSL, Thakker DR (1997) Applications of the Caco-2 model in the design and development of orally active drugs: elucidation of biochemical and physical barriers posed by the intestinal epithelium. Adv Drug Deliv Rev 23(1-3):77–98. doi:10.1016/S0169-409X(96)00427-9 Gendron RL, Armstrong E, Paradis H, Haines L, Desjardins M, Short CE, Clow Ka, Driedzic WR (2011) Osmotic pressure-adaptive responses in the eye tissues of rainbow smelt (Osmerus mordax). Mol Vis 17(December 2010):2596–604 Geppert M, Sigg L, Schirmer K (2016) A novel two-compartment barrier model for investigating nanoparticle transport in fish intestinal epithelial cells. Environ Sci Nano 3:388–395. doi:10.1039/C5EN00226E Gillespie JL, Anyah A, Taylor JM, Marlin JW, Taylor TA (2016) A versatile method for immunofluorescent staining of cells cultured on permeable membrane inserts. Med Sci Monit Basic Res 22:91–94. doi:10.12659/MSMBR.900656 Grosell M, Farell A, Brauner C (eds) (2010) The Multifunctional gut of fish, fish physi edn. Academic Press, United States Gupta V, Doshi N, Mitragotri S (2013) Permeation of insulin, calcitonin and exenatide across caco-2 monolayers: measurement using a rapid, 3-Day System. PLoS One 8(2). doi:10.1371/journal.pone.0057136 Handy RD, Musonda MM, Phillips C, Falla SJ (2000) Mechanisms of gastrointestinal copper absorption in the African walking catfish: copper dose-effects and a novel anion-dependent pathway in the intestine. J Exp Biol 203(Pt 15):2365–2377 Heikkinen AT, Korjamo T, Mönkkönen J (2010) Modelling of drug disposition kinetics in in vitro intestinal absorption cell models. Basic and Clinical. Pharmacol Toxicol 106(3):180–188 Hubatsch I, Ragnarsson EGE, Artursson P (2007) Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat Protoc 2(9):2111–9. doi:10.1038/nprot.2007.303 Hunter J, Hirst BH (1997) Intestinal secretion of drugs. The role of P-glycoprotein and related drug efflux systems in limiting oral drug absorption. Adv Drug Deliv Rev 25(2-3):129–157. doi:10.1016/S0169-409X(97)00497-3 Hutchinson T (2008) Intelligent testing strategies in ecotoxicology: approaches to reduce and replace fish and amphibians in toxicity testing. Intell Test Strateg Ecotoxicol 14:1–11 Inokuchi H, Takei T, Aikawa K, Shimizu M (2009) The effect of hyperosmosis on paracellular permeability in Caco-2 cell monolayers. Biosci Biotechnol Biochem 73(2):328–334. doi:10.1271/bbb.80538 Jeram S, Riego Sintes JM, Halder M, Baraibar Fentanes J, Sokull-Klüttgen B, Hutchinson TH (2005) A strategy to reduce the use of fish in acute ecotoxicity testing of new chemical substances notified in the European Union. Regul Toxicol Pharmacol 42(2):218–224. doi:10.1016/j.yrtph.2005.04.005 Jha AN (2004) Genotoxicological studies in aquatic organisms: an overview. Mutat Res -Fundam Mol Mech Mutagen 552(1-2):1–17. doi:10.1016/j.mrfmmm.2004.06.034 Jha AN (2008) Ecotoxicological applications and significance of the comet assay. Mutagenesis 23(3):207–221. doi:10.1093/mutage/gen014 Jonsson ME, Carlsson C, Smith RW, Pärt P (2006) Effects of copper on CYP1A activity and epithelial barrier properties in the rainbow trout gill. Aquat Toxicol 79:78–86. doi:10.1016/j.aquatox.2006.05.006 Jurišić V, Bumbaširević V (2008) In vitro assays for cell death determination. Arch Oncol 16(3-4):49–54. doi:10.2298/AOO0804049J Jutfelt F (2011) Barrier Function of the Gut. In: Farrell AP (ed) Encycl. Fish Physiol. From Genome to Environ., vol 2, Elsevier Inc., pp 1322–1331. doi:10.1016/B978-0-12-374553-8.00068-X Jutfelt F, Olsen RE, Glette J, Ringo E, Sundell K (2006) Translocation of viable Aeromonas salmonicida across the intestine of rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 29(5):255–262. doi:10.1111/j.1365-2761.2006.00715.x Kamunde C, Clayton C, Wood CM (2002a) Waterborne vs. dietary copper uptake in rainbow trout and the effects of previous waterborne copper exposure. Am J Physiol Regul Integr Comp Physiol 283(1):R69–R78. doi:10.1152/ajpregu.00016.2002 Kamunde C, Grosell M, Higgs D, Wood CM (2002b) Copper metabolism in actively growing rainbow trout (Oncorhynchus mykiss): interactions between dietary and waterborne copper uptake. J Exp Biol 205(Pt 2):279–290 Kawano A, Kales SC, Fujiki K, DeWitte-Orr SJ, Dixon B, Lee LEJ, Bols NC (2010) A comparison of rainbow trout cell lines for their expression of the major histocompatibility complex genes and the induction of beta-2-microglobulin by dsRNA. Fish Shellfish Immunol 29(2):312–318. doi:10.1016/j.fsi.2010.04.007 Kawano a, Haiduk C, Schirmer K, Hanner R, Lee LEJ, Dixon B, Bols NC (2011) Development of a rainbow trout intestinal epithelial cell line and its response to lipopolysaccharide. Aquac Nutr 17(2). doi:10.1111/j.1365-2095.2010.00757.x Klinck JS, Wood CM (2011) In vitro characterization of cadmium transport along the gastrointestinal tract of freshwater rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 102(1-2):58–72. doi:10.1016/j.aquatox.2010.12.009 Kumaravel TS, Jha AN (2006) Reliable Comet assay measurements for detecting DNA damage induced by ionising radiation and chemicals. Mutat Res-Genet Toxicol Environ Mutagen 605(1-2):7–16. doi:10.1016/j.mrgentox.2006.03.00 Lakra WS, Swaminathan TR, Joy KP (2011) Development, characterization, conservation and storage of fish cell lines: a review. Fish Physiol Biochem 37(1):1–20. doi:10.1007/s10695-010-9411-x Langan LM, Dodd NJF, Owen SF, Purcell WM, Jackson SK, Jha AN (2016) Direct measurements of oxygen gradients in spheroid culture system using electron parametric resonance oximetry. PLoS ONE 11(2):e0149,492. doi:10.1371/journal.pone.0149492 Lee LEJ, Dayeh VR, Schirmer K, Bols NC (2009) Applications and potential uses of fish gill cell lines: examples with RTgill-W1. Vitr Cell Dev Biol-Anim 1-8. doi:10.1007/s11626-008-9173-2 Leonard E, Nadella S, Bucking C, Wood C (2009) Characterization of dietary Ni uptake in the rainbow trout, Oncorhynchus mykiss. Aquat Toxicol 93(4):205–216. doi:10.1016/j.aquatox.2009.05.002 Leonard F, Collnot EM, Lehr CM (2010) A three-dimensional coculture of enterocytes, monocytes and dendritic cells to model inflamed intestinal mucosa in vitro. Mol Pharm 7(6):2103–2119. doi:10.1021/mp1000795 Lillicrap A, Springer T, Tyler CR (2016) A tiered assessment strategy for more effective evaluation of bioaccumulation of chemicals in fish. Regul. Toxicol Pharmacol 75:20–26 Liu Y, Hu M (2002) Absorption and metabolism of flavonoids in the Caco-2 cell culture model and a perfused rat intestinal model. Drug Metab Dispos 30(4):370–377. doi:10.1124/dmd.30.4.370 Mariappan TT, Singh S (2004) Evidence of efflux-mediated and saturable absorption of rifampicin in rat intestine using the ligated loop and everted gut sac techniques. Mol Pharm 1(5):363–367 Mazon aF, Nolan DT, Lock RaC, Fernandes MN, Wendelaar Bonga SE (2004) A short-term in vitro gill culture system to study the effects of toxic (copper) and non-toxic (cortisol) stressors on the rainbow trout, Oncorhynchus mykiss (Walbaum). Toxicol Vitr 18(5):691–701. doi:10.1016/j.tiv.2004.03.008 Minghetti M, Drieschner C, Bramaz N, Schug H, Schirmer K (2017) A fish intestinal epithelial barrier model established from the rainbow trout (Oncorhynchus mykiss) cell line, RTgutGC. Cell Biol Toxicol 1–17. doi:10.1007/s10565-017-9385-x Minghetti M, Leaver MJ, Carpene‘ E, George SG (2008) Copper transporter 1, metallothionein and glutathione reductase genes are differentially expressed in tissues of sea bream (Sparus aurata) after exposure to dietary or waterborne copper. Comp Biochem Physiol C Toxicol Pharmacol 147(4):450–9. doi:10.1016/j.cbpc.2008.01.014 Mustafa SA, Davies SJ, Jha AN (2012) Determination of hypoxia and dietary copper mediated sub-lethal toxicity in carp, Cyprinus carpio, at different levels of biological organisation. Chemosphere 87(4):413–422 Nadella S, Hung C, Wood C (2011) Mechanistic characterization of gastric copper transport in rainbow trout. J Comp Physiol B Biochem Syst Environ Physiol 181(1):27–41. doi:10.1007/s00360-010-0510-x Nadella SR, Bucking C, Grosell M, Wood CM (2006a) Gastrointestinal assimilation of Cu during digestion of a single meal in the freshwater rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol - C Toxicol Pharmacol 143(4):394–401. doi:10.1016/j.cbpc.2006.04.012 Nadella SR, Grosell M, Wood CM (2006b) Physical characterization of high-affinity gastrointestinal Cu transport in vitro in freshwater rainbow trout Oncorhynchus mykiss. J Comp Physiol B Biochem Syst Environ Physiol 176(8):793–806. doi:10.1007/s00360-006-0101-z Nadella SR, Grosell M, Wood CM (2007) Mechanisms of dietary Cu uptake in freshwater rainbow trout: Evidence for Na-assisted Cu transport and a specific metal carrier in the intestine. J Comp Physiol B Biochem Syst Environ Physiol 177(4):433–446. doi:10.1007/s00360-006-0142-3 Natoli M, Leoni BD, D'Agnano I, D'Onofrio M, Brandi R, Arisi I, Zucco F, Felsani A (2011) Cell growing density affects the structural and functional properties of Caco-2 differentiated monolayer. J Cell Physiol 226(6):1531–1543. doi:10.1002/jcp.22487 Nehls S, Segner H (2005) Comet assay with the fish cell line rainbow trout gonad-2 for in vitro genotoxicity testing of xenobiotics and surface waters. Environ Toxicol Chem 24(8):2078–2087. doi:10.1897/04-301R.1 Noach AB, Sakai M, Blom-Roosemalen MC, de Jonge HR, de Boer AG, Breimer DD (1994) Effect of anisotonic conditions on the transport of hydrophilic model compounds across monolayers of human colonic cell lines. J Pharmacol Exp Ther 270(3):1373–1380 OECD (2012) Test No 305: Bioaccumulation in Fish : Aqueous and Dietary Exposure. doi:10.1787/9789264185296-en Ojo Aa, Wood CM (2007) In vitro analysis of the bioavailability of six metals via the gastrointestinal tract of the rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 83(1):10–23. doi:10.1016/j.aquatox.2007.03.006 Papis E, Davies SJ, Jha AN (2011) Relative sensitivity of fish and mammalian cells to the antibiotic, trimethoprim: cytotoxic and genotoxic responses as determined by neutral red retention, Comet and micronucleus assays. Ecotoxicology 20(1):208–217. doi:10.1007/ s10646-010-0572-2 Parton A, Norrgren L, Bergstrom E, Sjoberg P (1993) Primary cultures of epithelial cells from Rainbow trout gills. J Exp Biol 175:219–232. doi:10.1016/0141-1136(95)98426-D Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45. doi:10.1093/nar/29.9.e45 Rachlin JW, Perlmutter A (1968) Fish cells in culture for study of aquatic toxicants. Water Res 2(6):409–414. doi:10.1016/0043-1354(68)90060-2 Raisuddin S, Jha AN (2004) Relative sensitivity of fish and mammalian cells to sodium arsenate and arsenite as determined by alkaline single-cell gel electrophoresis and cytokinesis-block micronucleus assay. Environ Mol Mutagen 44(1):83–89. doi:10.1002/em.20027 Ramakers C, Ruijter JM, Lekanne Deprez RH, Moorman AFM (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339(1):62–66. doi:10.1016/S0304-3940(02)01423-4 Rao X, Huang X, Zhou Z, Lin X (2013) An improvement of the 2(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath 3(3):71–85. doi:10.1016/j.biotechadv.2011.08.021.Secreted Reeves JF, Davies SJ, Dodd NJF, Jha AN (2008) Hydroxyl radicals (·OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutat Res - Fundam Mol Mech Mutagen 640(1-2):113–122. doi:10.1016/j.mrfmmm.2007.12.010 RStudio T (2015) RStudio: Integrated Development Environment for R. RStudio Inc., Boston, MA Sambuy Y, De Angelis I, Ranaldi G, Scarino ML, Stammati a, Zucco F (2005) The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol Toxicol 21(1):1–26. doi:10.1007/s10565-005-0085-6 Sandrini JZ, Bianchini A, Trindade GS, Nery LEM, Marins LFF (2009) Reactive oxygen species generation and expression of DNA repair-related genes after copper exposure in zebrafish (Danio rerio) ZFL cells. Aquat Toxicol 95(4):285–291. doi:10.1016/j.aquatox.2009.02.016 Schirmer K (2006) Proposal to improve vertebrate cell cultures to establish them as substitutes for the regulatory testing of chemicals and effluents using fish. Toxicology 224(3):163–83. doi:10.1016/j.tox.2006.04.042 Schnell S, Stott LC, Hogstrand C, Wood CM, Kelly SP, Pärt P, Owen SF, Bury NR (2016) Procedures for the reconstruction, primary culture and experiment use of rainbow trout gill epithelia. Nat Protoc 11(3):490–498. doi:10.1038/nprot.2016.029 Scholz S, Segner H (1999) Induction of CYP1A in primary cultures of rainbow trout (Oncorhynchus mykiss) liver cells: concentration-response relationships of four model substances. Ecotoxicol Environ Saf 43(3):252–260. doi:10.1006/eesa.1999.1786 Scholz S, Renner P, Belanger SE, Busquet F, Davi R, Demeneix BA, Denny JS, Léonard M, McMaster ME, Villeneuve DL, Embry MR (2013) Alternatives to in vivo tests to detect endocrine disrupting chemicals (EDCs) in fish and amphibians-screening for estrogen, androgen and thyroid hormone disruption. Crit Rev Toxicol 43(1):45–72. doi:10.3109/10408444.2012.737762 Stott LC, Schnell S, Hogstrand C, Owen SF, Bury NR (2015) A primary fish gill cell culture model to assess pharmaceutical uptake and efflux: evidence for passive and facilitated transport. Aquat Toxicol 159:127–137. doi:10.1016/j.aquatox.2014.12.007 Teodorescu D, Munteanu CM, Staicu AC, Dinischiotu A (2008) Ldh activity in copper in-toxication of Carassius Auratus Gibelio gills and intestine. Sci Pap Anim Sci Biotechnol 41(2):169–174 Teodorescu D, Munteanu CM, Staicu AC, Dinischiotu A (2012) Changes in lactate dehydrogenase activity in Carassius Auratus Gibelio (L. Pysces) kidney, gills and intestine induced by acute exposure to copper. Rom Biotechnol Lett 17(6):7873–7880 Trischitta F, Denaro MG, Faggio C (1999) Effects of acetylcholine, serotonin and noradrenalin on ion transport in the middle and posterior part of Anguilla anguilla intestine. J Comp Physiol - B Biochem Syst Environ Physiol 169(6):370–376. doi:10.1007/s003600050233 van Herwaarden AE, van Waterschoot RaB, Schinkel AH (2009) How important is intestinal cytochrome P450 3A metabolism? Trends Pharmacol Sci 30(5):223–227. doi:10.1016/j.tips.2009.02.003 Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7). doi:10.1186/gb-2002-3-7-research0034 Vllasaliu D, Falcone FH, Stolnik S, Garnett M (2014) Basement membrane influences intestinal epithelial cell growth and presents a barrier to the movement of macromolecules. Exp Cell Res 323(1):218–231. doi:10.1016/j.yexcr.2014.02.022 Wolf K, Quimby MC (1962) Established eurythermic line of fish cells in vitro. Science 135(3508):1065–6. doi:10.1126/science.135.3508.1065 Wood C, Part P (1997) Cultured branchial epithelia from freshwater fish gills. J Exp Biol 200(Pt 6):1047–59 Wood CM, Eletti B, Pärt P (2002) New methods for the primary culture of gill epithelia from freshwater rainbow trout. Fish Physiol Biochem 26(4):329–344. doi:10.1023/B:FISH.0000009262.45438.79 Yamashita S, Konishi K, Yamazaki Y, Taki Y, Sakane T, Sezaki H, Furuyama Y (2002) New and Better aprotocols for a short-term Caco-2 cell culture system. J Pharm Sci 91(3):669–679. doi:10.1002/jps.10050 Yuan JS, Reed A, Chen F, Stewart CN (2006) Statistical analysis of real-time PCR data. BMC Bioinformatics 7:85. doi:10.1186/1471-2105-7-85