Application of the Time–Temperature Superposition Principle to Predict Long-Term Behaviour of an Adhesive for Use in Shipbuilding

Daniel A. Souto-Silvar1, A. Álvarez-García1, A. Díaz-Díaz2, Francisco J. Rodríguez-Dopico1, Jorge López-Beceiro1
1Universidade da Coruña, Campus Industrial de Ferrol, Departamento Ingeniería Naval e Industrial, Escola Politécnica de Enxeñaría de Ferrol, Grupo de Propiedades Térmicas y Reológicas de materiales, Ferrol, Spain
2Universidade da Coruña, Campus Industrial de Ferrol, Departamento Matemáticas, Escola Politécnica de Enxeñaría de Ferrol, Grupo de Propiedades Térmicas y Reológicas de materiales, Ferrol, Spain

Tóm tắt

The use of adhesives in the marine sector is rather limited at the time being, but their use in specific areas of the ship would be an advantage due, among other things, to their low weight and low stress concentration along the bonding joint. The aim of this work is to predict the long-term behaviour of the material, as this is a critical factor when using adhesive as a bonding method in ships, since its durability must be guaranteed throughout a previously defined life cycle. This can be predicted by applying the time–temperature superposition principle (TTS), which involves carrying out a test at different temperatures for each specimen, considerably reducing the test time. Two types of experiments have been carried out according with operation modes in dynamic mechanical analysis (DMA): a dynamic frequency sweep and a stationary creep test under constant stress, to check the behaviour of the adhesive under both dynamic and sustained loading. The master curve for the frequency study will be constructed in such a way as to cover the whole range of relevant vibrations that can occur on the vessel, while that for the creep test the curve obtained covers a range of 25 years, which is usually used as the minimum service life in shipbuilding. For both, a temperature range from room temperature to the maximum operating temperature of the material established by the manufacturer shall be studied.

Tài liệu tham khảo

Jeevi, G.; Nayak, S.K.; Abdul Kader, M.: Review on adhesive joints and their application in hybrid composite structures. J. Adhes. Sci. Technol. 33(14), 1497–1520 (2019). https://doi.org/10.1080/01694243.2018.1543528 Weitzenböck, J.R.: 1-Introduction to using adhesives in marine and offshore engineering. In: Weitzenböck, J.R. (Ed.) Adhesives in Marine Engineering, pp. 1–16. Woodhead, Sawston (2012). https://doi.org/10.1533/9780857096159.1 Delzendehrooy, F.; Akhavan-Safar, A.; Barbosa, A.Q., et al.: A comprehensive review on structural joining techniques in the marine industry. Compos. Struct. 289, 115490 (2022). https://doi.org/10.1016/j.compstruct.2022.115490 Allan, R.C.; Bird, J.; Clarke, J.D.: Use of adhesives in repair of cracks in ship structures. Mater. Sci. Technol. 4(10), 853–859 (1988). https://doi.org/10.1179/mst.1988.4.10.853 Sánchez-Silva, B.; Díaz-Díaz, A.; Tarrío-Saavedra, J.; López-Beceiro, J.; Gracia-Fernández, C.A.; Artiaga, R.: Thermal and rheological comparison of adhesives. J. Therm. Anal. Calorim. 138(5), 3357–3366 (2019) Ferry, J.D.: Viscoelastic properties of polymers. J. Am. Chem. Soc. 83, 4110–4111 (1961) Williams, M.L.; Landel, R.F.; Ferry, J.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77(14), 3701–3707 (1955). https://doi.org/10.1021/ja01619a008 O’Connell, P.A.; McKenna, G.B.: Arrhenius-type temperature dependence of the segmental relaxation below Tg. J. Chem. Phys. 110(22), 11054–11060 (1999). https://doi.org/10.1063/1.479046 Luo, W.; Ting-Qing, Y.; Qunli, A.: Time–temperature–stress equivalence and its application to nonlinear viscoelastic materials. Acta Mech. Solida Sin. 2001, 6 (2001) Luo, W.; Wang, C.; Hu, X.; Yang, T.: Long-term creep assessment of viscoelastic polymer by time–temperature–stress superposition. Acta Mech. Solida Sin. 25(6), 571–578 (2012). https://doi.org/10.1016/S0894-9166(12)60052-4 Federico, C.E.; Bouvard, J.L.; Combeaud, C.; Billon, N.: Large strain/time dependent mechanical behaviour of PMMAs of different chain architectures. Application of time–temperature superposition principle. Polymer 139, 177–187 (2018). https://doi.org/10.1016/j.polymer.2018.02.021 Arsac, A.; Zerroukhi, A.; Ainser, A.; Carrot, C.: Rheological characterization of styrene methyl methacrylate copolymers. Int. J. Polym. Anal. Charact. 7(1–2), 117–129 (2002). https://doi.org/10.1080/10236660214594 Chaffey, C.E.: Peak characterization and errors in dynamic mechanical analysis of polymer blends. Int. J. Polym. Anal. Charact. 5(1), 1–19 (1999). https://doi.org/10.1080/10236669908014170 Dorléans, V.; Delille, R.; Notta-Cuvier, D.; Lauro, F.; Michau, E.: Time–temperature superposition in viscoelasticity and viscoplasticity for thermoplastics. Polym. Test. 101, 107287 (2021). https://doi.org/10.1016/j.polymertesting.2021.107287 Yao, C.; Xia, Y.; Zhu, Z.; Yang, Z.; Chen, K.; Jiang, H.: Investigation on brittle–ductile transition of PMMA mode-II fracture using time–temperature superposition principle. Eng. Fract. Mech. 273, 108733 (2022). https://doi.org/10.1016/j.engfracmech.2022.108733 Wang, C.; Luo, W.; Liu, X.; Chen, X.; Jiang, L.; Yang, S.: Application of time–temperature–stress equivalence to nonlinear creep in poly(methyl methacrylate). Mater. Today Commun. 21, 100710 (2019). https://doi.org/10.1016/j.mtcomm.2019.100710 Guedes, R.M.; Gomes, M.; Simões, J.A.: DMTA analysis for long-term mechanical behaviour prediction of PMMA-based bone cements. J. Biomater. Sci. Polym. Ed. 17(10), 1173–1189 (2006). https://doi.org/10.1163/156856206778530678 Krauklis, A.E.; Akulichev, A.G.; Gagani, A.I.; Echtermeyer, A.T.: Time–temperature–plasticization superposition principle: predicting creep of a plasticized epoxy. Polymers 11(11), 1848 (2019). https://doi.org/10.3390/polym11111848 Varela-Rizo, H.; Weisenberger, M.; Bortz, D.R.; Martin-Gullon, I.: Fracture toughness and creep performance of PMMA composites containing micro and nanosized carbon filaments. Compos. Sci. Technol. 70(7), 1189–1195 (2010). https://doi.org/10.1016/j.compscitech.2010.03.005 Schalnat, J.; Daelemans, L.; De Baere, I.; De Clerck, K.; Van Paepegem, W.: Long-term stiffness prediction of particle filled polymers by dynamic mechanical analysis: frequency sweep versus creep method. Polym. Test. 103, 107368 (2021). https://doi.org/10.1016/j.polymertesting.2021.107368 Miyano, Y.; Nakada, M.; McMurray, M.K.; Muki, R.: Prediction of flexural fatigue strength of CRFP composites under arbitrary frequency, stress ratio and temperature. J. Compos. Mater. 31(6), 619–638 (1997). https://doi.org/10.1177/002199839703100605 García-Barruetabeña, J.; Cortés, F.; Abete, J.M.: A low modulus adhesive characterization by means of DMTA testing. J. Adhes. 88(4–6), 487–498 (2012). https://doi.org/10.1080/00218464.2012.660815 Geiss, P.L.; Vogt, D.: Assessment and prediction of long-term mechanical properties of adhesives with high plasticity. J. Adhes. Sci. Technol. 19(15), 1291–1303 (2005). https://doi.org/10.1163/156856105774784385 Xia, Y.; Zhu, Z.; Yang, Z.; Sun, T.; Yao, C.; Jiang, H.: Time-temperature superposition principle for the shear fracture behaviour of soft adhesive layers: from bulk to interface. Int. J. Adhes. Adhes. 117, 103180 (2022). https://doi.org/10.1016/j.ijadhadh.2022.103180 Carneiro Neto, R.M.; Akhavan-Safar, A.; Sampaio, E.M.; Assis, J.T.; da Silva, L.F.M.: Assessment of the creep life of adhesively bonded joints using the end notched flexure simples. Eng. Fail. Anal. 133, 105969 (2022). https://doi.org/10.1016/j.engfailanal.2021.105969 Nuwayer, H.M.; Newaz, G.M.: Flexural creep behavior of adhesively bonded metal and composite laminates. Int. J. Adhes. Adhes. 84, 220–226 (2018). https://doi.org/10.1016/j.ijadhadh.2018.03.010 Nuwayer, H.M.; Dhaliwal, G.S.; Newaz, G.M.: Time-dependent behavior of adhesively bonded composite–composite beams under flexural loading. J. Adhes. Sci. Technol. 34(12), 1348–1370 (2020). https://doi.org/10.1080/01694243.2019.1707584 Marques, E.A.S.; Carbas, R.J.C.; Silva, F.; da Silva, L.F.M.; de Paiva, D.P.S.; Magalhães, F.D.: Use of master curves based on time–temperature superposition to predict creep failure of aluminium-glass adhesive joints. Int. J. Adhes. Adhes. 74, 144–154 (2017). https://doi.org/10.1016/j.ijadhadh.2016.12.007 Wang, S.; Stratford, T.; Reynolds, T.P.S.: Linear creep of bonded FRP-strengthened metallic structures at warm service temperatures. Constr. Build. Mater. 283, 122699 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122699 Feng, C.W.; Keong, C.W.; Hsueh, Y.P.; Wang, Y.Y.; Sue, H.J.: Modeling of long-term creep behavior of structural epoxy adhesives. Int. J. Adhes. Adhes. 25, 427–436 (2005). https://doi.org/10.1016/j.ijadhadh.2004.11.009 Barbero, E.J.: 2-Time–temperature–age superposition principle for predicting long-term response of linear viscoelastic materials. In: Guedes, R.M. (Ed.) Creep and Fatigue in Polymer Matrix Composites, pp. 48–69. Woodhead Publishing, Sawston (2011). https://doi.org/10.1533/9780857090430.1.48 Gibhardt, D.; Krauklis, A.E.; Doblies, A.; Gagani, A.; Sabalina, A.; Starkova, O.; Fiedler, B.: Time, temperature and water aging failure envelope of thermoset polymers. Polym. Test. 118, 107901 (2023). https://doi.org/10.1016/j.polymertesting.2022.107901 Krauklis, A.E.; Akulichev, A.G.; Gagani, A.I.; Echtermeyer, A.T.: Time-temperature-plasticization superposition principle: predicting creep of a plasticized epoxy. Polymers (Basel) 11, 1848 (2019). https://doi.org/10.3390/polym11111848 Vorus, W.S.; Paulling, J.R.: Vibration. Society of Naval Architects and Marine Engineers, Singapore (2010) Hayashibara, H.; Iwata, T.; Ando, T.; Murakami, C.; Mori, E.; Kobayashi, I.: Degradation of structural adhesive bonding joints on ship exposure decks. J. Mar. Sci. Technol. 25(2), 510–519 (2020). https://doi.org/10.1007/s00773-019-00657-w Ward, M.; Sweeney, J.: Linear viscoelastic behaviour. In: Mechanical Properties of Solid Polymers, pp. 87–117 (2012). https://doi.org/10.1002/9781119967125.ch5 Artiaga-Díaz, R.: Thermal analysis fundamentals and applications to material characterization. In: Proceedings of the International Seminar—Thermal Analysis and Rheology, Ferrol, Spain, 30 Juny [Sic]–4 July 2003. Universidade da Coruña, Servizo de Publicacións (2005) Silva, L.F.M.; Dillard, D.; Blackman, B.; Adams, R.: Testing Adhesive Joints, Best Practices. Wiley, New York (2012) https://doi.org/10.1002/9783527647026 Teng, H.; Koike, K.; Zhou, D.; Satoh, Z.; Koike, Y.; Okamoto, Y.: High glass transition temperatures of poly(methyl methacrylate) prepared by free radical initiators. J. Polym. Sci. Part A Polym. Chem. 47, 315–317 (2009). https://doi.org/10.1002/pola.23154 Edwads, S.F.; Doi, M.: The Theory of Polymer Dynamics. [Paperback edition] (with corr.]. Clarendon (1988) van Gurp, M.; Palmen, J.: Time–temperature superposition for polymeric blends, p. 5 (1988). Cole, K.S.; Cole, R.H.: Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9(4), 341–351 (1941). https://doi.org/10.1063/1.1750906