Application of solid-state NMR techniques for structural characterization of metal-organic frameworks
Tài liệu tham khảo
Furukawa, 2013, The chemistry and applications of metal-organic frameworks, Science, 341, 123044, 10.1126/science.1230444
Kreno, 2012, Metal–organic framework materials as chemical sensors, Chem. Rev., 112, 1105, 10.1021/cr200324t
Li, 2012, Metal–organic frameworks for separations, Chem. Rev., 112, 869, 10.1021/cr200190s
Sumida, 2012, Carbon dioxide capture in metal–organic frameworks, Chem. Rev., 112, 724, 10.1021/cr2003272
Cui, 2012, Luminescent functional metal–organic frameworks, Chem. Rev., 112, 1126, 10.1021/cr200101d
Horcajada, 2012, Metal–organic frameworks in biomedicine, Chem. Rev., 112, 1232, 10.1021/cr200256v
Suh, 2012, Hydrogen storage in metal–organic frameworks, Chem. Rev., 112, 782, 10.1021/cr200274s
Chen, 2010, Metal− organic frameworks with functional pores for recognition of small molecules, Acc. Chem. Res., 43, 1115, 10.1021/ar100023y
Lustig, 2017, Metal–organic frameworks: functional luminescent and photonic materials for sensing applications, Chem. Soc. Rev., 46, 3242, 10.1039/C6CS00930A
Della Rocca, 2011, Nanoscale metal–organic frameworks for biomedical imaging and drug delivery, Acc. Chem. Res., 44, 957, 10.1021/ar200028a
Li, 2011, Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks, Coord. Chem. Rev., 255, 1791, 10.1016/j.ccr.2011.02.012
Tycko, 2011, Solid-state NMR studies of amyloid fibril structure, Annu. Rev. Phys. Chem., 62, 279, 10.1146/annurev-physchem-032210-103539
Blanc, 2013, In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells, Acc. Chem. Res., 46, 1952, 10.1021/ar400022u
Renault, 2010, Solid-state NMR spectroscopy on complex biomolecules, Angew. Chem. Int. Ed., 49, 8346, 10.1002/anie.201002823
Zhang, 2012, In situ solid-state NMR for heterogeneous catalysis: a joint experimental and theoretical approach, Chem. Soc. Rev., 41, 192, 10.1039/C1CS15009J
Hansen, 2013, Solid-state NMR in macromolecular systems: insights on how molecular entities move, Acc. Chem. Res., 46, 1996, 10.1021/ar300338b
Zhang, 2017, Proton-based ultrafast magic angle spinning solid-state NMR spectroscopy, Acc. Chem. Res., 50, 1105, 10.1021/acs.accounts.7b00082
Hong, 2011, Structure and dynamics of cationic membrane peptides and proteins: insights from solid-state NMR, Protein Sci., 20, 641, 10.1002/pro.600
Parthasarathy, 2013, Sensitivity and resolution enhanced solid-state NMR for paramagnetic systems and biomolecules under very fast magic angle spinning, Acc. Chem. Res., 46, 2127, 10.1021/ar4000482
Mao, 2017, Advanced solid-state NMR spectroscopy of natural organic matter, Prog. Nucl. Magn. Reson. Spectrosc., 100, 17, 10.1016/j.pnmrs.2016.11.003
Weingarth, 2013, Solid-state NMR-based approaches for supramolecular structure elucidation, Acc. Chem. Res., 46, 2037, 10.1021/ar300316e
Marchetti, 2017, Understanding surface and interfacial chemistry in functional nanomaterials via solid-state NMR, Adv. Mater., 29, 1605895, 10.1002/adma.201605895
Loquet, 2013, Structural investigations of molecular machines by solid-state NMR, Acc. Chem. Res., 46, 2070, 10.1021/ar300320p
Mandala, 2018, Structure and dynamics of membrane proteins from solid-state NMR, Annu. Rev. Biophys., 47, 201, 10.1146/annurev-biophys-070816-033712
Xu, 2019, Metal active sites and their catalytic functions in zeolites: insights from solid-state NMR spectroscopy, Acc. Chem. Res., 52, 2179, 10.1021/acs.accounts.9b00125
Qi, 2021, Solid-state NMR studies of internuclear correlations for characterizing catalytic materials, Chem. Soc. Rev., 50, 8382, 10.1039/D0CS01130D
Zheng, 2016, Acidic properties and structure–activity correlations of solid acid catalysts revealed by solid-state nmr spectroscopy, Acc. Chem. Res., 49, 655, 10.1021/acs.accounts.6b00007
Li, 2020, Recent advances of solid-state NMR spectroscopy for microporous materials, Adv. Mater., 32, 2002879, 10.1002/adma.202002879
Li, 2013, Recent advances of solid-state NMR studies on zeolites, Annu. Rep. NMR Spectrosc., 78, 1, 10.1016/B978-0-12-404716-7.00001-8
Paul, 2018, Combined solid-state NMR, FT-IR and computational studies on layered and porous materials, Chem. Soc. Rev., 47, 5684, 10.1039/C7CS00358G
Sutrisno, 2013, Solid-state NMR: a powerful tool for characterization of metal–organic frameworks, Solid State Nucl. Magn. Reson., 49, 1, 10.1016/j.ssnmr.2012.09.003
Shen, 2015, 17O solid-state NMR studies of oxygen-containing catalysts, Chin. J. Catal., 36, 1494, 10.1016/S1872-2067(15)60931-7
Fu, 2021, Probing molecular motions in metal-organic frameworks with solid-state NMR, Coord. Chem. Rev., 427, 213563, 10.1016/j.ccr.2020.213563
Brunner, 2020, Solid-state NMR spectroscopy: an advancing tool to analyse the structure and properties of metal–organic frameworks, Chem. Sci., 11, 4297, 10.1039/D0SC00735H
Bertmer, 2020, Solid-state NMR of small molecule adsorption in metal-organic frameworks (MOFs), Annu. Rep. NMR Spectrosc., 101, 1, 10.1016/bs.arnmr.2020.07.003
Witherspoon, 2018, Solid-state NMR investigations of carbon dioxide gas in metal–organic frameworks: insights into molecular motion and adsorptive behavior, Chem. Rev., 118, 10033, 10.1021/acs.chemrev.7b00695
Brown, 2018, Advanced solid-state NMR methods for characterising structure and self-assembly in supramolecular chemistry, polymers and hydrogels, Curr. Opin. Colloid Interface Sci., 33, 86, 10.1016/j.cocis.2018.02.005
Lucier, 2018, Characterization of metal–organic frameworks: unlocking the potential of solid-state NMR, Acc. Chem. Res., 51, 319, 10.1021/acs.accounts.7b00357
Liu, 2002, A robust technique for two-dimensional separation of undistorted chemical-shift anisotropy powder patterns in magic-angle-spinning NMR, J. Magn. Reson., 155, 15, 10.1006/jmre.2002.2503
Medek, 1995, Multiple-quantum magic-angle spinning NMR: a new method for the study of quadrupolar nuclei in solids, J. Am. Chem. Soc., 117, 12779, 10.1021/ja00156a015
Amoureux, 1998, Triple, quintuple and higher order multiple quantum MAS NMR of quadrupolar nuclei, Solid State Nucl. Magn. Reson., 10, 211, 10.1016/S0926-2040(97)00027-1
Massiot, 2002, Modelling one-and two-dimensional solid-state NMR spectra, Magn. Reson. Chem., 40, 70, 10.1002/mrc.984
Gullion, 1989, Rotational-echo double-resonance nmr, J. Magn. Reson., 81, 196
Oas, 1988, Rotary resonance recoupling of dipolar interactions in solid-state nuclear magnetic resonance spectroscopy, J. Chem. Phys., 89, 692, 10.1063/1.455191
Laage, 2009, Fast acquisition of multi-dimensional spectra in solid-state NMR enabled by ultra-fast MAS, J. Magn. Reson., 196, 133, 10.1016/j.jmr.2008.10.019
Demers, 2011, Progress in correlation spectroscopy at ultra-fast magic-angle spinning: basic building blocks and complex experiments for the study of protein structure and dynamics, Solid State Nucl. Magn. Reson., 40, 101, 10.1016/j.ssnmr.2011.07.002
Hu, 2011, Broad-band homo-nuclear correlations assisted by 1H irradiation for bio-molecules in very high magnetic field at fast and ultra-fast MAS frequencies, J. Magn. Reson., 212, 320, 10.1016/j.jmr.2011.07.011
Shen, 2012, Broadband finite-pulse radio-frequency-driven recoupling (fp-RFDR) with (XY8) 41 super-cycling for homo-nuclear correlations in very high magnetic fields at fast and ultra-fast MAS frequencies, J. Magn. Reson., 223, 107, 10.1016/j.jmr.2012.07.013
Nishiyama, 2012, Practical choice of 1H–1H decoupling schemes in through-bond 1H–{X} HMQC experiments at ultra-fast MAS, J. Magn. Reson., 214, 151, 10.1016/j.jmr.2011.10.014
Gan, 2007, Proton-detected 14N MAS NMR using homonuclear decoupled rotary resonance, Chem. Phys. Lett., 435, 163, 10.1016/j.cplett.2006.12.066
Dorn, 2020, Structure determination of boron-based oxidative dehydrogenation heterogeneous catalysts with ultrahigh field 35.2 T 11B solid-state NMR spectroscopy, ACS Catal., 10, 13852, 10.1021/acscatal.0c03762
Martins, 2020, Higher magnetic fields, finer MOF structural information: 17O solid-state NMR at 35.2 T, J. Am. Chem. Soc., 142, 14877, 10.1021/jacs.0c02810
Shen, 2020, Probing interactions of γ-alumina with water via multinuclear solid-state NMR spectroscopy, ChemCatChem, 12, 1569, 10.1002/cctc.201901838
Chien, 2020, Recent advances in solid-state nuclear magnetic resonance techniques for materials research, Annu. Rev. Mater. Res., 50, 493, 10.1146/annurev-matsci-091019-011049
Gan, 2019, Perspectives on high-field and solid-state NMR methods of quadrupole nuclei, J. Magn. Reson., 306, 86, 10.1016/j.jmr.2019.07.028
Hoffmann, 2012, Solid-state NMR spectroscopy of metal–organic framework compounds (MOFs), Materials, 5, 2537, 10.3390/ma5122537
Chen, 2016, Hierarchical structure and molecular dynamics of metal-organic framework as characterized by solid state NMR, J. Chem., 1
Moran, 2017, Exploiting NMR spectroscopy for the study of disorder in solids, Int. Rev. Phys. Chem., 36, 39, 10.1080/0144235X.2017.1256604
Gonzalez-Nelson, 2019, Rotational dynamics of linkers in metal–organic frameworks, Nanomaterials, 9, 330, 10.3390/nano9030330
Ashbrook, 2021, 17 O NMR spectroscopy of crystalline microporous materials, Chem. Sci., 12, 5016, 10.1039/D1SC00552A
Xiao, 2020, Solid-state NMR spectroscopy studies on structure , dynamics and host-guest interaction in metal-organic framework materials, Chem. J. Chin. Univ., 41, 204
Lucier, 2016, Reviewing Ti-47/49 solid-state NMR spectroscopy: from alloys and simple compounds to catalysts and porous materials, Annu. Rep. NMR Spectrosc., 88, 1, 10.1016/bs.arnmr.2015.10.001
Lucier, 2015, A review of Zr-91 solid-state nuclear magnetic resonance spectroscopy, Annu. Rep. NMR Spectrosc., 84, 233, 10.1016/bs.arnmr.2014.10.005
Huang, 2014, Recent advances in solid-state Zn-67 NMR studies: from nanoparticles to biological systems, Annu. Rep. NMR Spectrosc., 81, 1, 10.1016/B978-0-12-800185-1.00001-2
Venkatesh, 2018, Enhancing the sensitivity of solid-state NMR experiments with very low gyromagnetic ratio nuclei with fast magic angle spinning and proton detection, J. Phys. Chem., 122, 5635, 10.1021/acs.jpca.8b05107
Gao, 2021, Dual active sites on molybdenum/ZSM-5 catalyst for methane dehydroaromatization: insights from solid-state NMR spectroscopy, Angew. Chem. Int. Ed., 60, 10709, 10.1002/anie.202017074
Chen, 2020, Structure and catalytic characterization of a second framework Al (IV) site in zeolite catalysts revealed by NMR at 35.2 T, J. Am. Chem. Soc., 142, 7514, 10.1021/jacs.0c00590
Gan, 2017, NMR spectroscopy up to 35.2 T using a series-connected hybrid magnet, J. Magn. Reson., 284, 125, 10.1016/j.jmr.2017.08.007
He, 2013, Identification of nonequivalent framework oxygen species in metal–organic frameworks by 17O solid-state NMR, J. Phys. Chem. C, 117, 16953, 10.1021/jp403512m
Xu, 2015, Mapping out chemically similar, crystallographically nonequivalent hydrogen sites in metal–organic frameworks by 1H solid-state NMR spectroscopy, Chem. Mater., 27, 3306, 10.1021/acs.chemmater.5b00360
Wang, 2020, Mapping the oxygen structure of gamma-Al2O3 by high-field solid-state NMR spectroscopy, Nat. Commun., 11, 3620, 10.1038/s41467-020-17470-4
Bai, 2016, Zr-based metal–organic frameworks: design, synthesis, structure, and applications, Chem. Soc. Rev., 45, 2327, 10.1039/C5CS00837A
He, 2014, Spies within metal-organic frameworks: investigating metal centers using solid-state NMR, J. Phys. Chem. C, 118, 23728, 10.1021/jp5063868
Xu, 2013, Resolving multiple non-equivalent metal sites in magnesium-containing metal–organic frameworks by natural abundance 25Mg solid-state NMR spectroscopy, Chem. Eur J., 19, 4432, 10.1002/chem.201300113
Zhang, 2018, Welcoming gallium-and indium-fumarate MOFs to the family: synthesis, comprehensive characterization, observation of porous hydrophobicity, and CO2 dynamics, ACS Appl. Mater. Interfaces, 10, 28582, 10.1021/acsami.8b08562
Sutrisno, 2012, Characterization of Zn-containing metal–organic frameworks by solid-state 67Zn NMR spectroscopy and computational modeling, Chem. Eur J., 18, 12251, 10.1002/chem.201201563
Chen, 2018, Probing calcium-based metal-organic frameworks via natural abundance 43Ca solid-state NMR spectroscopy, Chem. Eur J., 24, 8732, 10.1002/chem.201802164
Xu, 2015, Monitoring and understanding the paraelectric–ferroelectric phase transition in the metal–organic framework [NH4][M (HCOO) 3] by solid-state NMR spectroscopy, Chem. Eur J., 21, 14348, 10.1002/chem.201501954
Madsen, 2020, Ultrahigh-field 67Zn NMR reveals short-range disorder in zeolitic imidazolate framework glasses, Science, 367, 1473, 10.1126/science.aaz0251
Chen, 2018, Loading across the periodic table: introducing 14 different metal ions to enhance metal–organic framework performance, ACS Appl. Mater. Interfaces, 10, 30296, 10.1021/acsami.8b08496
Brown, 2012, Applications of high-resolution 1H solid-state NMR, Solid State Nucl. Magn. Reson., 41, 1, 10.1016/j.ssnmr.2011.11.006
Krajnc, 2015, A simple NMR-based method for studying the spatial distribution of linkers within mixed-linker metal–organic frameworks, Angew. Chem. Int. Ed., 54, 10535, 10.1002/anie.201504426
Wehring, 2014, Ferrocene in the metal–organic framework MOF-5 studied by homo-and heteronuclear correlation NMR and MD simulation, Microporous Mesoporous Mater., 186, 130, 10.1016/j.micromeso.2013.11.045
Ortiz, 2014, New insights into the hydrogen bond network in Al-MIL-53 and Ga-MIL-53, J. Phys. Chem. C, 118, 22021, 10.1021/jp505893s
Tang, 2020, Quantitative analysis of linker composition and spatial arrangement of multivariate metal–organic framework UiO-66 through 1H fast MAS NMR, J. Phys. Chem. C, 124, 17640, 10.1021/acs.jpcc.0c04244
Tang, 2021, Breathing effect via solvent inclusions on the linker rotational dynamics of functionalized MIL-53, Chem. Eur J., 27, 14711, 10.1002/chem.202102419
Wack, 2013, Identifying selective host–guest interactions based on hydrogen bond donor–acceptor pattern in functionalized Al-MIL-53 metal–organic frameworks, J. Phys. Chem. C, 117, 19991, 10.1021/jp4063252
Kobayashi, 2017, Improved strategies for DNP-enhanced 2D 1H-X heteronuclear correlation spectroscopy of surfaces, Solid State Nucl. Magn. Reson., 87, 38, 10.1016/j.ssnmr.2017.08.002
Ramakrishna, 2021, Probing the dielectric transition and molecular dynamics in the metal–organic framework [(CH3) 2NH2] Mg (HCOO) 3 using high resolution NMR, J. Phys. Chem. C, 125, 3441, 10.1021/acs.jpcc.0c11149
Čendak, 2014, Indomethacin embedded into MIL-101 frameworks: a solid-state NMR study, J. Phys. Chem. C, 118, 6140, 10.1021/jp412566p
Haouas, 2011, Monitoring the activation process of the giant pore MIL-100 (Al) by solid state NMR, J. Phys. Chem. C, 115, 17934, 10.1021/jp206513v
Li, 2017, Solid-state NMR studies of host–guest interaction between UiO-67 and light alkane at room temperature, J. Phys. Chem. C, 121, 14261, 10.1021/acs.jpcc.7b04611
Li, 2018, Host-guest interaction of styrene and ethylbenzene in MIL-53 studied by solid-state NMR, Solid State Nucl. Magn. Reson., 90, 1, 10.1016/j.ssnmr.2017.12.004
Pourpoint, 2014, Probing 27 Al–13 C proximities in metal–organic frameworks using dynamic nuclear polarization enhanced NMR spectroscopy, Chem. Commun., 50, 933, 10.1039/C3CC47208F
Jayachandrababu, 2016, Structure elucidation of mixed-linker zeolitic imidazolate frameworks by solid-state 1H CRAMPS NMR spectroscopy and computational modeling, J. Am. Chem. Soc., 138, 7325, 10.1021/jacs.6b02754
Krajnc, 2017, Improved resolution and simplification of the spin-diffusion-based NMR method for the structural analysis of mixed-linker MOFs, J. Magn. Reson., 279, 22, 10.1016/j.jmr.2017.04.008
Kong, 2013, Mapping of functional groups in metal-organic frameworks, Science, 341, 882, 10.1126/science.1238339
Xiao, 2021, Host-guest interaction in ethylene and ethane separation on zeolitic imidazolate frameworks as revealed by solid-state NMR spectroscopy, Chem. Eur J., 27, 11303, 10.1002/chem.202101779
Wehring, 2010, Self-diffusion studies in CuBTC by PFG NMR and MD simulations, J. Phys. Chem. C, 114, 10527, 10.1021/jp102212w
Chmelik, 2012, Ethene/ethane mixture diffusion in the MOF sieve ZIF-8 studied by MAS PFG NMR diffusometry, Microporous Mesoporous Mater., 147, 135, 10.1016/j.micromeso.2011.06.009
Freude, 2018, NMR study of the host structure and guest dynamics investigated with alkane/alkene mixtures in metal organic frameworks ZIF-8, J. Phys. Chem. C, 123, 1904, 10.1021/acs.jpcc.8b11673
Pantatosaki, 2012, On the impact of sorbent mobility on the sorbed phase equilibria and dynamics: a study of methane and carbon dioxide within the zeolite imidazolate framework-8, J. Phys. Chem. C, 116, 201, 10.1021/jp207771s
Ramsahye, 2014, Adsorption and diffusion of light hydrocarbons in UiO-66 (Zr): a combination of experimental and modeling tools, J. Phys. Chem. C, 118, 27470, 10.1021/jp509672c
Berens, 2018, Ethane diffusion in mixed linker zeolitic imidazolate framework-7-8 by pulsed field gradient NMR in combination with single crystal IR microscopy, Phys. Chem. Chem. Phys., 20, 23967, 10.1039/C8CP04889D
Gullion, 1995, Measurement of dipolar interactions between spin-1/2 and quadrupolar nuclei by rotational-echo, adiabatic-passage, double-resonance nmr, Chem. Phys. Lett., 246, 325, 10.1016/0009-2614(95)01120-X
Brown, 2001, Advanced solid-state NMR methods for the elucidation of structure and dynamics of molecular, macromolecular, and supramolecular systems, Chem. Rev., 101, 4125, 10.1021/cr990132e
Ramachandran, 2003, 13C− 13C rotational resonance width distance measurements in uniformly 13C-labeled peptides, J. Am. Chem. Soc., 125, 15623, 10.1021/ja037761x
Giovine, 2017, NMR crystallography to probe the breathing effect of the MIL-53(Al) metal-organic framework using solid-state NMR measurements of C-13-Al-27 distances, Acta Crystallogr. Sect. C-Struct. Chem., 73, 176, 10.1107/S2053229616017915
Pourpoint, 2012, Measurement of aluminum-carbon distances using S-RESPDOR NMR experiments, ChemPhysChem, 13, 3605, 10.1002/cphc.201200490
Xu, 2018, Isolated π-interaction sites in mesoporous MOF backbone for repetitive and reversible dynamics in water, ACS Appl. Mater. Interfaces, 11, 973, 10.1021/acsami.8b19211
Yan, 2020, Molecular vises for precisely positioning ligands near catalytic metal centers in metal–organic frameworks, J. Am. Chem. Soc., 142, 16182, 10.1021/jacs.0c07450
Wang, 2018, Molecular vise approach to create metal-binding sites in MOFs and detection of biomarkers, Angew. Chem. Int. Ed., 130, 7238, 10.1002/ange.201803201
Pell, 2019, Paramagnetic NMR in solution and the solid state, Prog. Nucl. Magn. Reson. Spectrosc., 111, 1, 10.1016/j.pnmrs.2018.05.001
Clore, 2009, Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes, Chem. Rev., 109, 4108, 10.1021/cr900033p
Dawson, 2013, High-resolution solid-state C-13 NMR spectroscopy of the paramagnetic metal-organic frameworks, STAM-1 and HKUST-1, Phys. Chem. Chem. Phys., 15, 919, 10.1039/C2CP43445H
Ke, 2019, NMR chemical shifts of urea loaded copper benzoate. A joint solid-state NMR and DFT study, Solid State Nucl. Magn. Reson., 101, 31, 10.1016/j.ssnmr.2019.04.004
Dawson, 2019, C-13 pNMR of "crumple zone" Cu(II) isophthalate metal-organic frameworks, Solid State Nucl. Magn. Reson., 101, 44, 10.1016/j.ssnmr.2019.05.005
Tang, 2019, Host-guest interaction between methanol and metal-organic framework Cu3-xZnx(btc)(2) as revealed by solid-state NMR, J. Phys. Chem. C, 123, 24062, 10.1021/acs.jpcc.9b06332
Gul-E-Noor, 2011, Effects of varying water adsorption on a Cu-3(BTC)(2) metal-organic framework (MOF) as studied by H-1 and C-13 solid-state NMR spectroscopy, Phys. Chem. Chem. Phys., 13, 7783, 10.1039/c0cp02848g
Gul-E-Noor, 2013, Time dependent water uptake in Cu-3(btc)(2) MOF: identification of different water adsorption states by H-1 MAS NMR, Microporous Mesoporous Mater., 180, 8, 10.1016/j.micromeso.2013.06.033
Dekura, 2014, First in situ NMR observation of hydrogen adsorbed inside Cu-3(btc)(2) at ambient temperature and pressure, Chem. Lett., 43, 1363, 10.1246/cl.140404
Khan, 2015, NO adsorption in amino-modified Cu-3(btc)(2)-type MOFs studied by solid-state NMR, Microporous Mesoporous Mater., 216, 111, 10.1016/j.micromeso.2015.02.022
Giovine, 2018, The surprising stability of Cu-3(btc)(2) metal-organic framework under steam flow at high temperature, Cryst. Growth Des., 18, 6681, 10.1021/acs.cgd.8b00931
Wittmann, 2018, Probing interactions of N-donor molecules with open metal sites within paramagnetic Cr-MIL-101: a solid-state NMR spectroscopic and density functional theory study, J. Am. Chem. Soc., 140, 2135, 10.1021/jacs.7b10148
Pintacuda, 2007, NMR structure determination of protein-ligand complexes by lanthanide labeling, Acc. Chem. Res., 40, 206, 10.1021/ar050087z
Rauche, 2019, New insights into solvent-induced structural changes of C-13 labelled metal-organic frameworks by solid state NMR, Chem. Commun., 55, 9140, 10.1039/C9CC04298A
Blahut, 2021, Monitoring dynamics, structure, and magnetism of switchable metal-organic frameworks via H-1-Detected MAS NMR, Angew. Chem. Int. Ed., 60, 21778, 10.1002/anie.202107032
Kavoosi, 2017, Tailoring adsorption induced phase transitions in the pillared-layer type metal-organic framework DUT-8(Ni), Dalton Trans., 46, 4685, 10.1039/C7DT00015D
Klein, 2012, Structural flexibility and intrinsic dynamics in the M-2(2,6-ndc)(2)(dabco) (M = Ni, Cu, Co, Zn) metal-organic frameworks, J. Magn. Reson., 22, 10303
Khudozhitkov, 2019, Guests like gear levers: donor binding to coordinatively unsaturated metal sites in MIL-101 controls the linkers rotation, Chem. Eur J., 25, 5163, 10.1002/chem.201900585
Bahadori, 2019, Task-specific ionic liquid functionalized-MIL-101(Cr) as a heterogeneous and efficient catalyst for the cycloaddition of CO2 with epoxides under solvent free conditions, ACS Sustain. Chem. Eng., 7, 3962, 10.1021/acssuschemeng.8b05226
Zhang, 2020, Selectively enhanced H-1-H-1 correlations in proton-detected solid-state NMR under ultrafast MAS conditions, J. Phys. Chem. Lett., 11, 8077, 10.1021/acs.jpclett.0c02412