Application of solid-state NMR techniques for structural characterization of metal-organic frameworks

Solid State Nuclear Magnetic Resonance - Tập 117 - Trang 101772 - 2022
Caiyan He1,2, Shenhui Li1,2, Yuqing Xiao1,2, Jun Xu1,2, Feng Deng1,2
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China
2University of Chinese Academy of Sciences, Beijing 100049, PR China

Tài liệu tham khảo

Furukawa, 2013, The chemistry and applications of metal-organic frameworks, Science, 341, 123044, 10.1126/science.1230444 Kreno, 2012, Metal–organic framework materials as chemical sensors, Chem. Rev., 112, 1105, 10.1021/cr200324t Li, 2012, Metal–organic frameworks for separations, Chem. Rev., 112, 869, 10.1021/cr200190s Sumida, 2012, Carbon dioxide capture in metal–organic frameworks, Chem. Rev., 112, 724, 10.1021/cr2003272 Cui, 2012, Luminescent functional metal–organic frameworks, Chem. Rev., 112, 1126, 10.1021/cr200101d Horcajada, 2012, Metal–organic frameworks in biomedicine, Chem. Rev., 112, 1232, 10.1021/cr200256v Suh, 2012, Hydrogen storage in metal–organic frameworks, Chem. Rev., 112, 782, 10.1021/cr200274s Chen, 2010, Metal− organic frameworks with functional pores for recognition of small molecules, Acc. Chem. Res., 43, 1115, 10.1021/ar100023y Lustig, 2017, Metal–organic frameworks: functional luminescent and photonic materials for sensing applications, Chem. Soc. Rev., 46, 3242, 10.1039/C6CS00930A Della Rocca, 2011, Nanoscale metal–organic frameworks for biomedical imaging and drug delivery, Acc. Chem. Res., 44, 957, 10.1021/ar200028a Li, 2011, Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks, Coord. Chem. Rev., 255, 1791, 10.1016/j.ccr.2011.02.012 Tycko, 2011, Solid-state NMR studies of amyloid fibril structure, Annu. Rev. Phys. Chem., 62, 279, 10.1146/annurev-physchem-032210-103539 Blanc, 2013, In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells, Acc. Chem. Res., 46, 1952, 10.1021/ar400022u Renault, 2010, Solid-state NMR spectroscopy on complex biomolecules, Angew. Chem. Int. Ed., 49, 8346, 10.1002/anie.201002823 Zhang, 2012, In situ solid-state NMR for heterogeneous catalysis: a joint experimental and theoretical approach, Chem. Soc. Rev., 41, 192, 10.1039/C1CS15009J Hansen, 2013, Solid-state NMR in macromolecular systems: insights on how molecular entities move, Acc. Chem. Res., 46, 1996, 10.1021/ar300338b Zhang, 2017, Proton-based ultrafast magic angle spinning solid-state NMR spectroscopy, Acc. Chem. Res., 50, 1105, 10.1021/acs.accounts.7b00082 Hong, 2011, Structure and dynamics of cationic membrane peptides and proteins: insights from solid-state NMR, Protein Sci., 20, 641, 10.1002/pro.600 Parthasarathy, 2013, Sensitivity and resolution enhanced solid-state NMR for paramagnetic systems and biomolecules under very fast magic angle spinning, Acc. Chem. Res., 46, 2127, 10.1021/ar4000482 Mao, 2017, Advanced solid-state NMR spectroscopy of natural organic matter, Prog. Nucl. Magn. Reson. Spectrosc., 100, 17, 10.1016/j.pnmrs.2016.11.003 Weingarth, 2013, Solid-state NMR-based approaches for supramolecular structure elucidation, Acc. Chem. Res., 46, 2037, 10.1021/ar300316e Marchetti, 2017, Understanding surface and interfacial chemistry in functional nanomaterials via solid-state NMR, Adv. Mater., 29, 1605895, 10.1002/adma.201605895 Loquet, 2013, Structural investigations of molecular machines by solid-state NMR, Acc. Chem. Res., 46, 2070, 10.1021/ar300320p Mandala, 2018, Structure and dynamics of membrane proteins from solid-state NMR, Annu. Rev. Biophys., 47, 201, 10.1146/annurev-biophys-070816-033712 Xu, 2019, Metal active sites and their catalytic functions in zeolites: insights from solid-state NMR spectroscopy, Acc. Chem. Res., 52, 2179, 10.1021/acs.accounts.9b00125 Qi, 2021, Solid-state NMR studies of internuclear correlations for characterizing catalytic materials, Chem. Soc. Rev., 50, 8382, 10.1039/D0CS01130D Zheng, 2016, Acidic properties and structure–activity correlations of solid acid catalysts revealed by solid-state nmr spectroscopy, Acc. Chem. Res., 49, 655, 10.1021/acs.accounts.6b00007 Li, 2020, Recent advances of solid-state NMR spectroscopy for microporous materials, Adv. Mater., 32, 2002879, 10.1002/adma.202002879 Li, 2013, Recent advances of solid-state NMR studies on zeolites, Annu. Rep. NMR Spectrosc., 78, 1, 10.1016/B978-0-12-404716-7.00001-8 Paul, 2018, Combined solid-state NMR, FT-IR and computational studies on layered and porous materials, Chem. Soc. Rev., 47, 5684, 10.1039/C7CS00358G Sutrisno, 2013, Solid-state NMR: a powerful tool for characterization of metal–organic frameworks, Solid State Nucl. Magn. Reson., 49, 1, 10.1016/j.ssnmr.2012.09.003 Shen, 2015, 17O solid-state NMR studies of oxygen-containing catalysts, Chin. J. Catal., 36, 1494, 10.1016/S1872-2067(15)60931-7 Fu, 2021, Probing molecular motions in metal-organic frameworks with solid-state NMR, Coord. Chem. Rev., 427, 213563, 10.1016/j.ccr.2020.213563 Brunner, 2020, Solid-state NMR spectroscopy: an advancing tool to analyse the structure and properties of metal–organic frameworks, Chem. Sci., 11, 4297, 10.1039/D0SC00735H Bertmer, 2020, Solid-state NMR of small molecule adsorption in metal-organic frameworks (MOFs), Annu. Rep. NMR Spectrosc., 101, 1, 10.1016/bs.arnmr.2020.07.003 Witherspoon, 2018, Solid-state NMR investigations of carbon dioxide gas in metal–organic frameworks: insights into molecular motion and adsorptive behavior, Chem. Rev., 118, 10033, 10.1021/acs.chemrev.7b00695 Brown, 2018, Advanced solid-state NMR methods for characterising structure and self-assembly in supramolecular chemistry, polymers and hydrogels, Curr. Opin. Colloid Interface Sci., 33, 86, 10.1016/j.cocis.2018.02.005 Lucier, 2018, Characterization of metal–organic frameworks: unlocking the potential of solid-state NMR, Acc. Chem. Res., 51, 319, 10.1021/acs.accounts.7b00357 Liu, 2002, A robust technique for two-dimensional separation of undistorted chemical-shift anisotropy powder patterns in magic-angle-spinning NMR, J. Magn. Reson., 155, 15, 10.1006/jmre.2002.2503 Medek, 1995, Multiple-quantum magic-angle spinning NMR: a new method for the study of quadrupolar nuclei in solids, J. Am. Chem. Soc., 117, 12779, 10.1021/ja00156a015 Amoureux, 1998, Triple, quintuple and higher order multiple quantum MAS NMR of quadrupolar nuclei, Solid State Nucl. Magn. Reson., 10, 211, 10.1016/S0926-2040(97)00027-1 Massiot, 2002, Modelling one-and two-dimensional solid-state NMR spectra, Magn. Reson. Chem., 40, 70, 10.1002/mrc.984 Gullion, 1989, Rotational-echo double-resonance nmr, J. Magn. Reson., 81, 196 Oas, 1988, Rotary resonance recoupling of dipolar interactions in solid-state nuclear magnetic resonance spectroscopy, J. Chem. Phys., 89, 692, 10.1063/1.455191 Laage, 2009, Fast acquisition of multi-dimensional spectra in solid-state NMR enabled by ultra-fast MAS, J. Magn. Reson., 196, 133, 10.1016/j.jmr.2008.10.019 Demers, 2011, Progress in correlation spectroscopy at ultra-fast magic-angle spinning: basic building blocks and complex experiments for the study of protein structure and dynamics, Solid State Nucl. Magn. Reson., 40, 101, 10.1016/j.ssnmr.2011.07.002 Hu, 2011, Broad-band homo-nuclear correlations assisted by 1H irradiation for bio-molecules in very high magnetic field at fast and ultra-fast MAS frequencies, J. Magn. Reson., 212, 320, 10.1016/j.jmr.2011.07.011 Shen, 2012, Broadband finite-pulse radio-frequency-driven recoupling (fp-RFDR) with (XY8) 41 super-cycling for homo-nuclear correlations in very high magnetic fields at fast and ultra-fast MAS frequencies, J. Magn. Reson., 223, 107, 10.1016/j.jmr.2012.07.013 Nishiyama, 2012, Practical choice of 1H–1H decoupling schemes in through-bond 1H–{X} HMQC experiments at ultra-fast MAS, J. Magn. Reson., 214, 151, 10.1016/j.jmr.2011.10.014 Gan, 2007, Proton-detected 14N MAS NMR using homonuclear decoupled rotary resonance, Chem. Phys. Lett., 435, 163, 10.1016/j.cplett.2006.12.066 Dorn, 2020, Structure determination of boron-based oxidative dehydrogenation heterogeneous catalysts with ultrahigh field 35.2 T 11B solid-state NMR spectroscopy, ACS Catal., 10, 13852, 10.1021/acscatal.0c03762 Martins, 2020, Higher magnetic fields, finer MOF structural information: 17O solid-state NMR at 35.2 T, J. Am. Chem. Soc., 142, 14877, 10.1021/jacs.0c02810 Shen, 2020, Probing interactions of γ-alumina with water via multinuclear solid-state NMR spectroscopy, ChemCatChem, 12, 1569, 10.1002/cctc.201901838 Chien, 2020, Recent advances in solid-state nuclear magnetic resonance techniques for materials research, Annu. Rev. Mater. Res., 50, 493, 10.1146/annurev-matsci-091019-011049 Gan, 2019, Perspectives on high-field and solid-state NMR methods of quadrupole nuclei, J. Magn. Reson., 306, 86, 10.1016/j.jmr.2019.07.028 Hoffmann, 2012, Solid-state NMR spectroscopy of metal–organic framework compounds (MOFs), Materials, 5, 2537, 10.3390/ma5122537 Chen, 2016, Hierarchical structure and molecular dynamics of metal-organic framework as characterized by solid state NMR, J. Chem., 1 Moran, 2017, Exploiting NMR spectroscopy for the study of disorder in solids, Int. Rev. Phys. Chem., 36, 39, 10.1080/0144235X.2017.1256604 Gonzalez-Nelson, 2019, Rotational dynamics of linkers in metal–organic frameworks, Nanomaterials, 9, 330, 10.3390/nano9030330 Ashbrook, 2021, 17 O NMR spectroscopy of crystalline microporous materials, Chem. Sci., 12, 5016, 10.1039/D1SC00552A Xiao, 2020, Solid-state NMR spectroscopy studies on structure , dynamics and host-guest interaction in metal-organic framework materials, Chem. J. Chin. Univ., 41, 204 Lucier, 2016, Reviewing Ti-47/49 solid-state NMR spectroscopy: from alloys and simple compounds to catalysts and porous materials, Annu. Rep. NMR Spectrosc., 88, 1, 10.1016/bs.arnmr.2015.10.001 Lucier, 2015, A review of Zr-91 solid-state nuclear magnetic resonance spectroscopy, Annu. Rep. NMR Spectrosc., 84, 233, 10.1016/bs.arnmr.2014.10.005 Huang, 2014, Recent advances in solid-state Zn-67 NMR studies: from nanoparticles to biological systems, Annu. Rep. NMR Spectrosc., 81, 1, 10.1016/B978-0-12-800185-1.00001-2 Venkatesh, 2018, Enhancing the sensitivity of solid-state NMR experiments with very low gyromagnetic ratio nuclei with fast magic angle spinning and proton detection, J. Phys. Chem., 122, 5635, 10.1021/acs.jpca.8b05107 Gao, 2021, Dual active sites on molybdenum/ZSM-5 catalyst for methane dehydroaromatization: insights from solid-state NMR spectroscopy, Angew. Chem. Int. Ed., 60, 10709, 10.1002/anie.202017074 Chen, 2020, Structure and catalytic characterization of a second framework Al (IV) site in zeolite catalysts revealed by NMR at 35.2 T, J. Am. Chem. Soc., 142, 7514, 10.1021/jacs.0c00590 Gan, 2017, NMR spectroscopy up to 35.2 T using a series-connected hybrid magnet, J. Magn. Reson., 284, 125, 10.1016/j.jmr.2017.08.007 He, 2013, Identification of nonequivalent framework oxygen species in metal–organic frameworks by 17O solid-state NMR, J. Phys. Chem. C, 117, 16953, 10.1021/jp403512m Xu, 2015, Mapping out chemically similar, crystallographically nonequivalent hydrogen sites in metal–organic frameworks by 1H solid-state NMR spectroscopy, Chem. Mater., 27, 3306, 10.1021/acs.chemmater.5b00360 Wang, 2020, Mapping the oxygen structure of gamma-Al2O3 by high-field solid-state NMR spectroscopy, Nat. Commun., 11, 3620, 10.1038/s41467-020-17470-4 Bai, 2016, Zr-based metal–organic frameworks: design, synthesis, structure, and applications, Chem. Soc. Rev., 45, 2327, 10.1039/C5CS00837A He, 2014, Spies within metal-organic frameworks: investigating metal centers using solid-state NMR, J. Phys. Chem. C, 118, 23728, 10.1021/jp5063868 Xu, 2013, Resolving multiple non-equivalent metal sites in magnesium-containing metal–organic frameworks by natural abundance 25Mg solid-state NMR spectroscopy, Chem. Eur J., 19, 4432, 10.1002/chem.201300113 Zhang, 2018, Welcoming gallium-and indium-fumarate MOFs to the family: synthesis, comprehensive characterization, observation of porous hydrophobicity, and CO2 dynamics, ACS Appl. Mater. Interfaces, 10, 28582, 10.1021/acsami.8b08562 Sutrisno, 2012, Characterization of Zn-containing metal–organic frameworks by solid-state 67Zn NMR spectroscopy and computational modeling, Chem. Eur J., 18, 12251, 10.1002/chem.201201563 Chen, 2018, Probing calcium-based metal-organic frameworks via natural abundance 43Ca solid-state NMR spectroscopy, Chem. Eur J., 24, 8732, 10.1002/chem.201802164 Xu, 2015, Monitoring and understanding the paraelectric–ferroelectric phase transition in the metal–organic framework [NH4][M (HCOO) 3] by solid-state NMR spectroscopy, Chem. Eur J., 21, 14348, 10.1002/chem.201501954 Madsen, 2020, Ultrahigh-field 67Zn NMR reveals short-range disorder in zeolitic imidazolate framework glasses, Science, 367, 1473, 10.1126/science.aaz0251 Chen, 2018, Loading across the periodic table: introducing 14 different metal ions to enhance metal–organic framework performance, ACS Appl. Mater. Interfaces, 10, 30296, 10.1021/acsami.8b08496 Brown, 2012, Applications of high-resolution 1H solid-state NMR, Solid State Nucl. Magn. Reson., 41, 1, 10.1016/j.ssnmr.2011.11.006 Krajnc, 2015, A simple NMR-based method for studying the spatial distribution of linkers within mixed-linker metal–organic frameworks, Angew. Chem. Int. Ed., 54, 10535, 10.1002/anie.201504426 Wehring, 2014, Ferrocene in the metal–organic framework MOF-5 studied by homo-and heteronuclear correlation NMR and MD simulation, Microporous Mesoporous Mater., 186, 130, 10.1016/j.micromeso.2013.11.045 Ortiz, 2014, New insights into the hydrogen bond network in Al-MIL-53 and Ga-MIL-53, J. Phys. Chem. C, 118, 22021, 10.1021/jp505893s Tang, 2020, Quantitative analysis of linker composition and spatial arrangement of multivariate metal–organic framework UiO-66 through 1H fast MAS NMR, J. Phys. Chem. C, 124, 17640, 10.1021/acs.jpcc.0c04244 Tang, 2021, Breathing effect via solvent inclusions on the linker rotational dynamics of functionalized MIL-53, Chem. Eur J., 27, 14711, 10.1002/chem.202102419 Wack, 2013, Identifying selective host–guest interactions based on hydrogen bond donor–acceptor pattern in functionalized Al-MIL-53 metal–organic frameworks, J. Phys. Chem. C, 117, 19991, 10.1021/jp4063252 Kobayashi, 2017, Improved strategies for DNP-enhanced 2D 1H-X heteronuclear correlation spectroscopy of surfaces, Solid State Nucl. Magn. Reson., 87, 38, 10.1016/j.ssnmr.2017.08.002 Ramakrishna, 2021, Probing the dielectric transition and molecular dynamics in the metal–organic framework [(CH3) 2NH2] Mg (HCOO) 3 using high resolution NMR, J. Phys. Chem. C, 125, 3441, 10.1021/acs.jpcc.0c11149 Čendak, 2014, Indomethacin embedded into MIL-101 frameworks: a solid-state NMR study, J. Phys. Chem. C, 118, 6140, 10.1021/jp412566p Haouas, 2011, Monitoring the activation process of the giant pore MIL-100 (Al) by solid state NMR, J. Phys. Chem. C, 115, 17934, 10.1021/jp206513v Li, 2017, Solid-state NMR studies of host–guest interaction between UiO-67 and light alkane at room temperature, J. Phys. Chem. C, 121, 14261, 10.1021/acs.jpcc.7b04611 Li, 2018, Host-guest interaction of styrene and ethylbenzene in MIL-53 studied by solid-state NMR, Solid State Nucl. Magn. Reson., 90, 1, 10.1016/j.ssnmr.2017.12.004 Pourpoint, 2014, Probing 27 Al–13 C proximities in metal–organic frameworks using dynamic nuclear polarization enhanced NMR spectroscopy, Chem. Commun., 50, 933, 10.1039/C3CC47208F Jayachandrababu, 2016, Structure elucidation of mixed-linker zeolitic imidazolate frameworks by solid-state 1H CRAMPS NMR spectroscopy and computational modeling, J. Am. Chem. Soc., 138, 7325, 10.1021/jacs.6b02754 Krajnc, 2017, Improved resolution and simplification of the spin-diffusion-based NMR method for the structural analysis of mixed-linker MOFs, J. Magn. Reson., 279, 22, 10.1016/j.jmr.2017.04.008 Kong, 2013, Mapping of functional groups in metal-organic frameworks, Science, 341, 882, 10.1126/science.1238339 Xiao, 2021, Host-guest interaction in ethylene and ethane separation on zeolitic imidazolate frameworks as revealed by solid-state NMR spectroscopy, Chem. Eur J., 27, 11303, 10.1002/chem.202101779 Wehring, 2010, Self-diffusion studies in CuBTC by PFG NMR and MD simulations, J. Phys. Chem. C, 114, 10527, 10.1021/jp102212w Chmelik, 2012, Ethene/ethane mixture diffusion in the MOF sieve ZIF-8 studied by MAS PFG NMR diffusometry, Microporous Mesoporous Mater., 147, 135, 10.1016/j.micromeso.2011.06.009 Freude, 2018, NMR study of the host structure and guest dynamics investigated with alkane/alkene mixtures in metal organic frameworks ZIF-8, J. Phys. Chem. C, 123, 1904, 10.1021/acs.jpcc.8b11673 Pantatosaki, 2012, On the impact of sorbent mobility on the sorbed phase equilibria and dynamics: a study of methane and carbon dioxide within the zeolite imidazolate framework-8, J. Phys. Chem. C, 116, 201, 10.1021/jp207771s Ramsahye, 2014, Adsorption and diffusion of light hydrocarbons in UiO-66 (Zr): a combination of experimental and modeling tools, J. Phys. Chem. C, 118, 27470, 10.1021/jp509672c Berens, 2018, Ethane diffusion in mixed linker zeolitic imidazolate framework-7-8 by pulsed field gradient NMR in combination with single crystal IR microscopy, Phys. Chem. Chem. Phys., 20, 23967, 10.1039/C8CP04889D Gullion, 1995, Measurement of dipolar interactions between spin-1/2 and quadrupolar nuclei by rotational-echo, adiabatic-passage, double-resonance nmr, Chem. Phys. Lett., 246, 325, 10.1016/0009-2614(95)01120-X Brown, 2001, Advanced solid-state NMR methods for the elucidation of structure and dynamics of molecular, macromolecular, and supramolecular systems, Chem. Rev., 101, 4125, 10.1021/cr990132e Ramachandran, 2003, 13C− 13C rotational resonance width distance measurements in uniformly 13C-labeled peptides, J. Am. Chem. Soc., 125, 15623, 10.1021/ja037761x Giovine, 2017, NMR crystallography to probe the breathing effect of the MIL-53(Al) metal-organic framework using solid-state NMR measurements of C-13-Al-27 distances, Acta Crystallogr. Sect. C-Struct. Chem., 73, 176, 10.1107/S2053229616017915 Pourpoint, 2012, Measurement of aluminum-carbon distances using S-RESPDOR NMR experiments, ChemPhysChem, 13, 3605, 10.1002/cphc.201200490 Xu, 2018, Isolated π-interaction sites in mesoporous MOF backbone for repetitive and reversible dynamics in water, ACS Appl. Mater. Interfaces, 11, 973, 10.1021/acsami.8b19211 Yan, 2020, Molecular vises for precisely positioning ligands near catalytic metal centers in metal–organic frameworks, J. Am. Chem. Soc., 142, 16182, 10.1021/jacs.0c07450 Wang, 2018, Molecular vise approach to create metal-binding sites in MOFs and detection of biomarkers, Angew. Chem. Int. Ed., 130, 7238, 10.1002/ange.201803201 Pell, 2019, Paramagnetic NMR in solution and the solid state, Prog. Nucl. Magn. Reson. Spectrosc., 111, 1, 10.1016/j.pnmrs.2018.05.001 Clore, 2009, Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes, Chem. Rev., 109, 4108, 10.1021/cr900033p Dawson, 2013, High-resolution solid-state C-13 NMR spectroscopy of the paramagnetic metal-organic frameworks, STAM-1 and HKUST-1, Phys. Chem. Chem. Phys., 15, 919, 10.1039/C2CP43445H Ke, 2019, NMR chemical shifts of urea loaded copper benzoate. A joint solid-state NMR and DFT study, Solid State Nucl. Magn. Reson., 101, 31, 10.1016/j.ssnmr.2019.04.004 Dawson, 2019, C-13 pNMR of "crumple zone" Cu(II) isophthalate metal-organic frameworks, Solid State Nucl. Magn. Reson., 101, 44, 10.1016/j.ssnmr.2019.05.005 Tang, 2019, Host-guest interaction between methanol and metal-organic framework Cu3-xZnx(btc)(2) as revealed by solid-state NMR, J. Phys. Chem. C, 123, 24062, 10.1021/acs.jpcc.9b06332 Gul-E-Noor, 2011, Effects of varying water adsorption on a Cu-3(BTC)(2) metal-organic framework (MOF) as studied by H-1 and C-13 solid-state NMR spectroscopy, Phys. Chem. Chem. Phys., 13, 7783, 10.1039/c0cp02848g Gul-E-Noor, 2013, Time dependent water uptake in Cu-3(btc)(2) MOF: identification of different water adsorption states by H-1 MAS NMR, Microporous Mesoporous Mater., 180, 8, 10.1016/j.micromeso.2013.06.033 Dekura, 2014, First in situ NMR observation of hydrogen adsorbed inside Cu-3(btc)(2) at ambient temperature and pressure, Chem. Lett., 43, 1363, 10.1246/cl.140404 Khan, 2015, NO adsorption in amino-modified Cu-3(btc)(2)-type MOFs studied by solid-state NMR, Microporous Mesoporous Mater., 216, 111, 10.1016/j.micromeso.2015.02.022 Giovine, 2018, The surprising stability of Cu-3(btc)(2) metal-organic framework under steam flow at high temperature, Cryst. Growth Des., 18, 6681, 10.1021/acs.cgd.8b00931 Wittmann, 2018, Probing interactions of N-donor molecules with open metal sites within paramagnetic Cr-MIL-101: a solid-state NMR spectroscopic and density functional theory study, J. Am. Chem. Soc., 140, 2135, 10.1021/jacs.7b10148 Pintacuda, 2007, NMR structure determination of protein-ligand complexes by lanthanide labeling, Acc. Chem. Res., 40, 206, 10.1021/ar050087z Rauche, 2019, New insights into solvent-induced structural changes of C-13 labelled metal-organic frameworks by solid state NMR, Chem. Commun., 55, 9140, 10.1039/C9CC04298A Blahut, 2021, Monitoring dynamics, structure, and magnetism of switchable metal-organic frameworks via H-1-Detected MAS NMR, Angew. Chem. Int. Ed., 60, 21778, 10.1002/anie.202107032 Kavoosi, 2017, Tailoring adsorption induced phase transitions in the pillared-layer type metal-organic framework DUT-8(Ni), Dalton Trans., 46, 4685, 10.1039/C7DT00015D Klein, 2012, Structural flexibility and intrinsic dynamics in the M-2(2,6-ndc)(2)(dabco) (M = Ni, Cu, Co, Zn) metal-organic frameworks, J. Magn. Reson., 22, 10303 Khudozhitkov, 2019, Guests like gear levers: donor binding to coordinatively unsaturated metal sites in MIL-101 controls the linkers rotation, Chem. Eur J., 25, 5163, 10.1002/chem.201900585 Bahadori, 2019, Task-specific ionic liquid functionalized-MIL-101(Cr) as a heterogeneous and efficient catalyst for the cycloaddition of CO2 with epoxides under solvent free conditions, ACS Sustain. Chem. Eng., 7, 3962, 10.1021/acssuschemeng.8b05226 Zhang, 2020, Selectively enhanced H-1-H-1 correlations in proton-detected solid-state NMR under ultrafast MAS conditions, J. Phys. Chem. Lett., 11, 8077, 10.1021/acs.jpclett.0c02412