Application of sol-gel methods to obtain silica materials decorated with ferrocenyl-ureidopyrimidine moieties. Preparation of hollow spheres and modification of a carbon electrode
Tài liệu tham khảo
Larik, 2017, Recent advances in the synthesis, biological activities and various applications of ferrocene derivatives, Appl. Organomet. Chem., 31, 10.1002/aoc.3664
Astruc, 2017, Why is ferrocene so exceptional?, Eur. J. Inorg. Chem., 10.1002/ejic.201600983
Khan, 2018, Research advances in the synthesis and applications of ferrocene-based electro and photo responsive materials, Appl. Organomet. Chem., 10.1002/aoc.4575
Khan, 2018, Research advances in the synthesis and applications of ferrocene-based electro and photo responsive materials, Appl. Organomet. Chem., 10.1002/aoc.4575
Zhou, 2016, Progress on the synthesis and catalytic and anti-migration properties of ferrocene-based burning rate catalysts, Appl. Organomet. Chem., 10.1002/aoc.3502
Noël, 2013, Ferrocene-derived P,N ligands: synthesis and application in enantioselective catalysis, Green Process. Synth., 10.1515/gps-2013-0036
Dwadnia, 2018, Input of P, N-(phosphanyl, amino)-ferrocene hybrid derivatives in late transition metals catalysis, Coord. Chem. Rev., 355, 74, 10.1016/j.ccr.2017.07.015
Zhang, 2015, Palladium catalyzed asymmetric Suzuki-Miyaura coupling reactions to axially chiral biaryl compounds: chiral ligands and recent advances, Coord. Chem. Rev., 286, 1, 10.1016/j.ccr.2014.11.011
Wani, 2015, Ferroquine and its derivatives: new generation of antimalarial agents, Eur. J. Med. Chem., 101, 534, 10.1016/j.ejmech.2015.07.009
Patra, 2017, The medicinal chemistry of ferrocene and its derivatives, Nat. Rev. Chem., 1, 10.1038/s41570-017-0066
Ludwig, 2019, Ferrocene derivatives as anti-infective agents, Coord. Chem. Rev., 396, 22, 10.1016/j.ccr.2019.06.004
Xiao, 2020, Current scenario of ferrocene-containing hybrids for antimalarial activity, Eur. J. Med. Chem., 185, 10.1016/j.ejmech.2019.111791
Ong, 2019, Organometallic compounds in drug discovery: past, present and future, Drug Discov. Today Technol., 10.1016/j.ddtec.2019.06.001
Sun, 2014, Molecular recognition and sensing based on ferrocene derivatives and ferrocene-based polymers, Organometallics, 33, 4560, 10.1021/om5000453
Molina, 2008, Ferrocene-based small molecules for multichannel molecular recognition of cations and anions, Eur. J. Inorg. Chem., 3401, 10.1002/ejic.200800474
Chaubey, 2002, Mediated biosensors, Biosens. Bioelectron., 17, 441, 10.1016/S0956-5663(01)00313-X
Wang, 2014, Electrochemical biosensors based on ferroceneboronic acid and its derivatives: a review, Biosensors, 4, 243, 10.3390/bios4030243
Scottwell, 2016, Ferrocene-containing non-interlocked molecular machines, Chem. Commun., 52, 2451, 10.1039/C5CC09569G
Takahashi, 2013, Recent progress in ferrocene-modified thin films and nanoparticles for biosensors, Materials, 6, 5742, 10.3390/ma6125742
Saleem, 2015, Review on synthesis of ferrocene-based redox polymers and derivatives and their application in glucose sensing, Anal. Chim. Acta, 876, 9, 10.1016/j.aca.2015.01.012
Rabti, 2016, Bio(Sensing) devices based on ferrocene–functionalized graphene and carbon nanotubes, Carbon N. Y., 108, 481, 10.1016/j.carbon.2016.07.043
Gallei, 2018, Recent trends in metallopolymer design: redox-controlled surfaces, porous membranes, and switchable optical materials using ferrocene-containing polymers, Chem. Eur J., 24, 10006, 10.1002/chem.201800412
Gu, 2018, Redox-stimuli-responsive drug delivery systems with supramolecular ferrocenyl-containing polymers for controlled release, Coord. Chem. Rev., 364, 51, 10.1016/j.ccr.2018.03.013
Wu, 2017, Ferrocene-based redox-responsive polymer gels: synthesis, structures and applications, J. Organomet. Chem., 828, 38, 10.1016/j.jorganchem.2016.10.041
Sun, 2014, Molecular recognition and sensing based on ferrocene derivatives and ferrocene-based polymers, Organometallics, 33, 4560, 10.1021/om5000453
Yuan, 2019, Redox polymers in electrochemical systems: from methods of mediation to energy storage, Curr. Opin. Electrochem., 15, 1, 10.1016/j.coelec.2019.03.003
Usman, 2018, Recent progress on ferrocene-based burning rate catalysts for propellant applications, J. Organomet. Chem., 872, 40, 10.1016/j.jorganchem.2018.07.015
Douhal, 2019, Functionalization methods of SBA-15 mesoporous molecular sieve: a brief overview
Audebert, 1991, Electrochemical probing of the sol-gel-xerogel evolution, J. Mater. Chem., 1, 699, 10.1039/JM9910100699
Audebert, 1993, Electrochemical probing of the activity of glucose oxidase embedded sol-gel matrices, Chem. Mater., 5, 911, 10.1021/cm00031a005
Collinson, 1997, Electroactivity of redox probes encapsulated within sol-gel-derived silicate films, Langmuir, 13, 7245, 10.1021/la9701485
Buckley, 1994, The sol-gel preparation of silica gels, J. Chem. Educ., 71, 599, 10.1021/ed071p599
Ward, 1995, Preparing catalytic materials by the sol-gel method, Ind. Eng. Chem. Res., 34, 421, 10.1021/ie00041a001
Audebert, 1994, Modified electrodes from organic-inorganic hybrid gels containing ferrocene units covalently bonded inside a silica network, J. Electroanal. Chem., 372, 275, 10.1016/0022-0728(94)03337-4
Audebert, 1996, Modified electrodes from organic-inorganic hybrid gels formed by hydrolysis-polycondensation of some trimethoxysilylferrocenes, J. Electroanal. Chem., 413, 89, 10.1016/0022-0728(96)04607-4
Wang, 1998, Electrochemical characterization of inorganic | organic hybrid films prepared from ferrocene modified silanes, J. Electroanal. Chem., 455, 127, 10.1016/S0022-0728(98)00149-1
Gun, 1996, Sol-gel derived, ferrocenyl-modified silicate-graphite composite electrode: wiring of glucose oxidase, Anal. Chim. Acta, 336, 95, 10.1016/S0003-2670(96)00354-6
Alothman, 2012, A review: fundamental aspects of silicate mesoporous materials, Materials, 5, 2874, 10.3390/ma5122874
Gao, 2013, Bridged-ferrocene functionalized mesoporous SBA-15 material prepared via evaporation-induced self-assembly, J. Porous Mater., 20, 47, 10.1007/s10934-012-9573-2
Zhang, 2010, Synthesis of a ferrocene-containing ordered mesoporous organosilica and its catalytic activity, J. Porous Mater., 17, 643, 10.1007/s10934-009-9334-z
Abboud, 2018, Synthesis of ferrocenylazobenzene-functionalized MCM-41 via direct co-condensation method, Microporous Mesoporous Mater., 265, 179, 10.1016/j.micromeso.2018.02.013
Liu, 2016, Electrochemical deposition of sol–gel films, 1
Vilà, 2015, Electrochemical response of vertically-aligned, ferrocene-functionalized mesoporous silica films: effect of the supporting electrolyte, Electrochim. Acta, 179, 304, 10.1016/j.electacta.2015.02.169
Kaur, 2017, Anion sensing with chemosensors having multiple –NH recognition units, TrAC Trends Anal. Chem. (Reference Ed.), 95, 86, 10.1016/j.trac.2017.08.003
Smith, 2017, Electrochemically controlled hydrogen bonding for supramolecular assembly: challenges and opportunities, Curr. Opin. Electrochem., 2, 76, 10.1016/j.coelec.2017.04.002
Cholewiak, 2018, Linear neutral receptors for anions: synthesis, structure and applications, Synth. Met., 50, 4555, 10.1055/s-0037-1609943
Fehér, 2016, Synthesis of 2-Ureido-4-ferrocenyl pyrimidine guests. Investigation of complementary molecular recognition of 2,6-diaminopyridine, Organometallics, 35, 4023, 10.1021/acs.organomet.6b00586
Keszei, 2019, Molecular recognition of strong acids by using a 2-ureido-4-ferrocenyl pyrimidine receptor, Eur. J. Inorg. Chem., 4095, 10.1002/ejic.201900803
Zou, 2012, Synthesis, crystal structures, electrochemistry and nonlinear optical properties of a novel (D-A-D) biferrocenyl derivative: 2-Amino-4,6- diferrocenylpyrimidine, J. Organomet. Chem., 720, 66, 10.1016/j.jorganchem.2012.08.036
Wu, 2006, Antiplasmodial activity of ferrocenyl chalcones: investigations into the role of ferrocene, Eur. J. Pharmaceut. Sci., 10.1016/j.ejps.2005.09.007
Fehér, 2009, A two-step synthesis of ferrocenyl pyrazole and pyrimidine derivatives based on carbonylative Sonogashira coupling of iodoferrocene, J. Organomet. Chem., 694, 4036, 10.1016/j.jorganchem.2009.08.029
Nicholson, 1964, Theory of stationary electrode polarography: single scan and cyclic methods applied to reversible, irreversible, and kinetic systems, Anal. Chem., 36, 706, 10.1021/ac60210a007
Han, 2012, Incorporation of metal ions into silica-grafted imidazolium-based ionic liquids to efficiently catalyze cycloaddition reactions of CO2 and epoxides, Catal. Lett., 142, 259, 10.1007/s10562-011-0753-5
Zhang, 2015, Silica-based nanocapsules: synthesis, structure control and biomedical applications, Chem. Soc. Rev., 44, 315, 10.1039/C4CS00199K
Wang, 2016, Synthesis, properties, and applications of hollow micro-/nanostructures, Chem. Rev., 116, 10983, 10.1021/acs.chemrev.5b00731
Ramli, 2017, Hollow polymer particles: a review, RSC Adv., 7, 52632, 10.1039/C7RA10358A
Blažek Bregović, 2015, Anion binding with urea and thiourea derivatives, Coord. Chem. Rev., 295, 80, 10.1016/j.ccr.2015.03.011
Bao, 2017, Micelle-template synthesis of hollow silica spheres for improving water vapor permeability of waterborne polyurethane membrane, Sci. Rep., 7, 46638, 10.1038/srep46638
Armstrong, 2001, Thermal stability of a ureidopyrimidinone model compound, Mater. Sci. Eng. C, 18, 45, 10.1016/S0928-4931(01)00359-9
Taubert, 2017, First examples of organosilica-based ionogels: synthesis and electrochemical behavior, Beilstein J. Nanotechnol., 8, 736, 10.3762/bjnano.8.77
Shan, 2020, Preparation of β-CD@ferrocene@hollow mesoporous silica microsphere and investigation of its flame retardant EP, Polym. Compos., 10.1002/pc.25516
J. Liu, Y. Li, M. Zhao, Z. Lei, H. Guo, Y. Tang, H. Yan, Redox-responsive hollow mesoporous silica nanoparticles constructed via host–guest interactions for controllable drug release, J. Biomater. Sci. Polym. Ed. https://doi.org/10.1080/09205063.2019.1700601.