Application of pareto-optimal front as an option to desirability function for the optimization of a microbiological process

Microchemical Journal - Tập 155 - Trang 104682 - 2020
Pablo C. Giordano1,2,3, Virginia Pereyra4, Alejandro J. Beccaria2, Silvana Vero4, Héctor C. Goicoechea1,3
1Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, CC 242 (3000), Santa Fe, Argentina
2Laboratorio de Fermentaciones (LFF), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, CC 242 (3000), Santa Fe, Argentina
3Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Godoy Cruz 2290 (C1425FQB) CABA, Argentina
4Cátedra de Microbiología, Facultad de Química, Universidad de la República, Montevideo, Uruguay

Tài liệu tham khảo

Leardi, 2009, Experimental design in chemistry: a tutorial, Anal. Chim. Acta, 652, 161, 10.1016/j.aca.2009.06.015 Marengo, 2004, Optimization by experimental design and artificial neural networks of the ion-interaction reversed-phase liquid chromatographic separation of twenty cosmetic presevatives, J. Chromatogr. A., 1029, 57, 10.1016/j.chroma.2003.12.044 Tabandeh, 2008, Response surface methodology for optimizing the induction conditions of recombinant interferon beta during high cell density culture, Chem. Eng. Sci., 63, 2477, 10.1016/j.ces.2008.02.003 Derringer, 1980, Simultaneous optimization of several response variables, J. Qual. Technol., 12, 214, 10.1080/00224065.1980.11980968 Sánchez, 2016, A useful tool for computation and interpretation of trading-off solutions through pareto-optimal front in the field of experimental designs for mixtures, Chem. Intell. Lab. Syst., 158, 210, 10.1016/j.chemolab.2016.09.007 Ortiz, 2011, Improving the visualization of the pareto-optimal front for the multi response optimization of chromatograohic determinations, Anal. Chim. Acta, 687, 129, 10.1016/j.aca.2010.12.023 Vera Candioti, 2014, Experimental design and multiple response optimization. using the desirability function in analytical methods development, Talanta, 124, 123, 10.1016/j.talanta.2014.01.034 Ortiz, 2006, Vectorial optimization as a methodogical alternative to desirability function, Chem. Int. Lab. Syst., 83, 157, 10.1016/j.chemolab.2005.11.005 Hong, 2018, Pareto fronts for multiobjective optimal design of the lithium-ion battery cell, J. Energ. Stor., 17, 507, 10.1016/j.est.2018.04.003 Mostafaei, 2018, ANFIS models for prediction of biodiesel fuels cetane number using desirability function, Fuel, 216, 665, 10.1016/j.fuel.2017.12.025 Yang, 2013, A niched pareto tabu search for multi-objective optimal design of groundwater remediation systems, J. Hydrol., 490, 56, 10.1016/j.jhydrol.2013.03.022 Triñanes, 2020 Mohammed Yaser, 2019, Multi-objective optimization of milling process parameters in glass fiber reinforced polymer via grey relational analysis and desirability function, Materials Today: Proceedings, 11, 1015 de Paula Gomes, 2009, Bio-fuels production and the environmental indicators, Renew. Sust. Energ. Rev., 13, 2201, 10.1016/j.rser.2009.01.015 Meher, 2006, Technical aspects of biodiesel production by transesterification-a review, Renew. Sust. Energy Rev., 10, 248, 10.1016/j.rser.2004.09.002 Zhu, 2008, Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation, Bioresour. Technol., 99, 7881, 10.1016/j.biortech.2008.02.033 Ryu, 2012, High-cell density cultivation of oleaginous yeast Cryptococcus curvatus for biodiesel production using organic waste from the brewery industry, Bioresour. Technol., 135, 357, 10.1016/j.biortech.2012.09.054 Meng, 2009, Biodiesel production from oleaginous microorganisms, Renew. Energ., 34, 1, 10.1016/j.renene.2008.04.014 Liu, 2007, Biodiesel production by direct methanolysis of oleaginous microbial biomass, J. Chem. Technol. Biotechnol., 82, 775, 10.1002/jctb.1744 Yong-Hong, 2006, Optimization of culture conditions for lipid production by Rhodosporidium toruloides, Chinese J. Biotechnol, 22, 650, 10.1016/S1872-2075(06)60050-2 Fei, 2011, The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production, Bioresour Technol, 102, 2695, 10.1016/j.biortech.2010.10.141 Yu, 2011, Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid, Bioresour. Technol., 102, 6134, 10.1016/j.biortech.2011.02.081 Economou, 2010, Semi-solid state fermentation of sweet sorghum for the biotechnological production of single cell oil, Bioresour. Technol., 101, 1385, 10.1016/j.biortech.2009.09.028 Ykema, 1988, Optimization of lipid production in the oleaginous yeast Apiotrichum curvatum in whey-permeate, Appl. Microbiol. Biotechnol., 29, 211 Papanikolaou, 2007, Lipid production by oleaginous Mucorales cultivated on renewable carbon sources, Eur. J. Lipid. Sci. Technol., 109, 1060, 10.1002/ejlt.200700169 Angerbauer, 2008, Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production, Bioresour. Technol., 99, 3051, 10.1016/j.biortech.2007.06.045 Karatay, 2010, Improving the lipid accumulation properties of the yeast cells for biodiesel production using molasses, Bioresour. Technol., 101, 7988, 10.1016/j.biortech.2010.05.054 Olivieri, 2010, The effect of factor interactions in plackett–burman experimental designs. comparison of bayesian-gibbs analysis and genetic algorithms, Chemometr. Intell. Lab. Syst., 102, 8, 10.1016/j.chemolab.2010.02.007 Li, 1992, Optimization of calibration data with the dynamic genetic algorithm, Anal. Chim. Acta, 268, 123, 10.1016/0003-2670(92)85255-5 Goldberg, 1989, 89 Bramlette, 1991, Initialization, mutation and selection methods in genetic algorithms for function optimization, 100 Li, 2007, Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors, Biotechnol. Bioeng., 98, 764, 10.1002/bit.21489 Xue, 2008, Studies on lipid production by Rhodotorula glutinis fermentation using monosodium glutamate wastewater as culture medium, Bioresour. Technol., 99, 5923, 10.1016/j.biortech.2007.04.046