Application of pair distribution function analysis to structural investigation of alumina supported MoS2 catalysts
Tài liệu tham khảo
1996
Topsøe, 1996, 1
Farias, 1984, The CO coadsorption and reactions of sulfur, hydrogen and oxygen on clean and sulfided Mo(100) and on MoS2(0001) crystal faces, Surf. Sci., 140, 181, 10.1016/0039-6028(84)90390-X
Tanaka, 1985, 99
Roxlo, 1986, Catalytic defects at molybdenum disulfide “edge” planes, Solid State Ionics, 22, 97, 10.1016/0167-2738(86)90063-9
Okamoto, 2005, Structure of the active sites of co−Mo hydrodesulfurization catalysts as studied by magnetic susceptibility measurement and NO adsorption, J. Phys. Chem. B, 109, 288, 10.1021/jp0462052
Burch, 1985, Chemisorption/catalytic activity correlations for sulphided Ni/Mo/Al2O3 hydrodesulphurisation catalysts, Appl. Catal., 17, 273, 10.1016/S0166-9834(00)83210-8
Payen, 1994, Morphology study of MOS2- and WS2-based hydrotreating catalysts by high-resolution electron microscopy, J. Catal., 147, 123, 10.1006/jcat.1994.1122
Stockmann, 1995, Investigation of MoS2 on γ-Al2O3 by HREM with atomic resolution, J. Mol. Catal. A Chem., 102, 147, 10.1016/1381-1169(95)00111-5
Eijsbouts, 1993, MoS2 structures in high-activity hydrotreating catalysts, Appl. Catal. A Gen., 105, 53, 10.1016/0926-860X(93)85133-A
Delarosa, 2004, Structural studies of catalytically stabilized model and industrial-supported hydrodesulfurization catalysts, J. Catal., 225, 288, 10.1016/j.jcat.2004.03.039
Zavala-Sanchez, 2020, High-resolution STEM-HAADF microscopy on a γ-Al2O3 supported MoS2 catalyst—proof of the changes in dispersion and morphology of the slabs with the addition of citric acid, Nanotechnology., 31, 10.1088/1361-6528/ab483c
Hensen, 2001, The relation between morphology and hydrotreating activity for supported MoS2 particles, J. Catal., 199, 224, 10.1006/jcat.2000.3158
Cesano, 2011, Model oxide supported MoS2 HDS catalysts: structure and surface properties, Catal. Sci. Technol., 1, 123, 10.1039/c0cy00050g
Calais, 1998, Crystallite size determination of highly dispersed unsupported MoS2 catalysts, J. Catal., 174, 130, 10.1006/jcat.1998.1934
Pollack, 1979, Identification by X-ray diffraction of MoS in used CoMoAlO desulfurization catalysts, J. Catal., 59, 452, 10.1016/S0021-9517(79)80015-9
Sanders, 1986, Transmission electron microscopy of catalysts, J. Electron Microsc. Tech., 3, 67, 10.1002/jemt.1060030108
Hall, 2000, Debye function analysis of structure in diffraction from nanometer-sized particles, J. Appl. Phys., 87, 1666, 10.1063/1.372075
Beyerlein, 2013, A review of Debye function analysis, Powder Diffract., 28, S2, 10.1017/S0885715613001218
Billinge, 2008, Nanoscale structural order from the atomic pair distribution function (PDF): There’s plenty of room in the middle, J. Solid State Chem., 181, 1695, 10.1016/j.jssc.2008.06.046
Neder, 2005, Structure of nanoparticles from powder diffraction data using the pair distribution function, J. Phys. Condens. Matter, 17, S125, 10.1088/0953-8984/17/5/013
Billinge, 2007, The problem with determining atomic structure at the nanoscale, Science., 316, 561, 10.1126/science.1135080
Pakharukova, 2020, Total scattering Debye function analysis: effective approach for structural studies of supported MoS2-based hydrotreating catalysts, Ind. Eng. Chem. Res., 59, 10914, 10.1021/acs.iecr.0c01254
Egami, 2012
Pakharukova, 2014, Alumina-supported platinum catalysts: local atomic structure and catalytic activity for complete methane oxidation, Appl. Catal. A Gen., 486, 12, 10.1016/j.apcata.2014.08.014
Page, 2004, Direct observation of the structure of gold nanoparticles by total scattering powder neutron diffraction, Chem. Phys. Lett., 393, 385, 10.1016/j.cplett.2004.05.107
Petkov, 2014, Solving the nanostructure problem: exemplified on metallic alloy nanoparticles, Nanoscale., 6, 10048, 10.1039/C4NR01633E
Pakharukova, 2015, Structure of copper oxide species supported on monoclinic zirconia, J. Phys. Chem. C, 119, 28828, 10.1021/acs.jpcc.5b06331
Chupas, 2009, Application of high-energy X-rays and pair-distribution-function analysis to nano-scale structural studies in catalysis, Catal. Today, 145, 213, 10.1016/j.cattod.2009.03.026
Gilbert, 2008, Finite size effects on the real-space pair distribution function of nanoparticles, J. Appl. Crystallogr., 41, 554, 10.1107/S0021889808007905
Masadeh, 2007, Quantitative size-dependent structure and strain determination of CdSe nanoparticles using atomic pair distribution function analysis, Phys. Rev. B, 76, 115413, 10.1103/PhysRevB.76.115413
Kodama, 2006, Finite size effects of nanoparticles on the atomic pair distribution functions, Acta Crystallogr. Sect. A Found. Crystallogr., 62, 444, 10.1107/S0108767306034635
Farrow, 2007, PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals, J. Phys. Condens. Matter, 19, 335219, 10.1088/0953-8984/19/33/335219
Guinier, 1963
Olds, 2015, DShaper : an approach for handling missing low- Q data in pair distribution function analysis of nanostructured systems, J. Appl. Crystallogr., 48, 1651, 10.1107/S1600576715016581
Usher, 2018, A numerical method for deriving shape functions of nanoparticles for pair distribution function refinements, Acta Crystallogr. Sect. A Found. Adv., 74, 322, 10.1107/S2053273318004977
Page, 2011, Building and refining complete nanoparticle structures with total scattering data, J. Appl. Crystallogr., 44, 327, 10.1107/S0021889811001968
Petkov, 2009, Size, shape, and internal atomic ordering of nanocrystals by atomic pair distribution functions: a comparative study of γ-Fe2O3 nanosized spheres and tetrapods, J. Am. Chem. Soc., 131, 14264, 10.1021/ja9067589
Liu, 2017, Quantitative analysis of the morphology of {101} and {001} faceted anatase TiO2 nanocrystals and its implication on photocatalytic activity, Chem. Mater., 29, 5591, 10.1021/acs.chemmater.7b01172
Yatsenko, 2018, DIANNA (diffraction analysis of nanopowders) – a software for structural analysis of nanosized powders, Zeitschrift Für Krist. Cryst. Mater., 233, 61, 10.1515/zkri-2017-2056
Yatsenko, 2012, DIANNA (diffraction analysis of Nanopowders): software for structural analysis of ultradisperse systems by X-ray methods, Bull. Russ. Acad. Sci. Phys., 76, 382, 10.3103/S1062873812030410
Ashiotis, 2015, The fast azimuthal integration Python library: pyFAI, J. Appl. Crystallogr., 48, 510, 10.1107/S1600576715004306
Qiu, 2004, PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data, J. Appl. Crystallogr., 37, 10.1107/S0021889804011744
Debye, 1915, Zerstreuung von Röntgenstrahlen, Ann. Phys., 351, 809, 10.1002/andp.19153510606
Lee, 2012, Morphological determination of face-centered-cubic metallic nanoparticles by X-ray diffraction, J. Colloid Interface Sci., 369, 129, 10.1016/j.jcis.2011.12.053
2011
Lauritsen, 2007, Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts, J. Catal., 249, 220, 10.1016/j.jcat.2007.04.013
Grønborg, 2018, Visualizing hydrogen-induced reshaping and edge activation in MoS2 and Co-promoted MoS2 catalyst clusters, Nat. Commun., 9, 2211, 10.1038/s41467-018-04615-9
Chen, 2014, IR spectroscopic evidence for MoS2 morphology change with sulfidation temperature on MoS2/Al2O3 catalyst, J. Phys. Chem. C, 118, 30039, 10.1021/jp510470g
Okamoto, 2009, Effect of sulfidation temperature on the intrinsic activity of Co–MoS2 and Co–WS2 hydrodesulfurization catalysts, J. Catal., 265, 216, 10.1016/j.jcat.2009.05.003
Wang, 2021, Sulfidation of MoO3/γ-Al2O3 towards a highly efficient catalyst for CH4 reforming with H2S, Catal. Sci. Technol., 11, 1125, 10.1039/D0CY02226H
Inamura, 1994, The role of co in unsupported Co-Mo sulfides in the hydrodesulfurization of thiophene, J. Catal., 147, 515, 10.1006/jcat.1994.1168
Afanasiev, 2010, The influence of reducing and sulfiding conditions on the properties of unsupported MoS2-based catalysts, J. Catal., 269, 269, 10.1016/j.jcat.2009.11.004
Mazoyer, 2005, In situ EXAFS study of the sulfidation of an hydrotreating catalyst doped with a non chelating organic additive, Oil Gas Sci. Technol., 60, 791, 10.2516/ogst:2005056
