Application of pair distribution function analysis to structural investigation of alumina supported MoS2 catalysts

Colloids and Interface Science Communications - Tập 43 - Trang 100454 - 2021
Vera P. Pakharukova1, Dmitriy A. Yatsenko1, Evgeny Yu. Gerasimov1, Evgeniya N. Vlasova1, Galina A. Bukhtiyarova, Sergey V. Tsybulya1
1Boreskov Institute of Catalysis SB RAS, Pr. Lavrentieva 5, 630090, Novosibirsk, Russia

Tài liệu tham khảo

1996 Topsøe, 1996, 1 Farias, 1984, The CO coadsorption and reactions of sulfur, hydrogen and oxygen on clean and sulfided Mo(100) and on MoS2(0001) crystal faces, Surf. Sci., 140, 181, 10.1016/0039-6028(84)90390-X Tanaka, 1985, 99 Roxlo, 1986, Catalytic defects at molybdenum disulfide “edge” planes, Solid State Ionics, 22, 97, 10.1016/0167-2738(86)90063-9 Okamoto, 2005, Structure of the active sites of co−Mo hydrodesulfurization catalysts as studied by magnetic susceptibility measurement and NO adsorption, J. Phys. Chem. B, 109, 288, 10.1021/jp0462052 Burch, 1985, Chemisorption/catalytic activity correlations for sulphided Ni/Mo/Al2O3 hydrodesulphurisation catalysts, Appl. Catal., 17, 273, 10.1016/S0166-9834(00)83210-8 Payen, 1994, Morphology study of MOS2- and WS2-based hydrotreating catalysts by high-resolution electron microscopy, J. Catal., 147, 123, 10.1006/jcat.1994.1122 Stockmann, 1995, Investigation of MoS2 on γ-Al2O3 by HREM with atomic resolution, J. Mol. Catal. A Chem., 102, 147, 10.1016/1381-1169(95)00111-5 Eijsbouts, 1993, MoS2 structures in high-activity hydrotreating catalysts, Appl. Catal. A Gen., 105, 53, 10.1016/0926-860X(93)85133-A Delarosa, 2004, Structural studies of catalytically stabilized model and industrial-supported hydrodesulfurization catalysts, J. Catal., 225, 288, 10.1016/j.jcat.2004.03.039 Zavala-Sanchez, 2020, High-resolution STEM-HAADF microscopy on a γ-Al2O3 supported MoS2 catalyst—proof of the changes in dispersion and morphology of the slabs with the addition of citric acid, Nanotechnology., 31, 10.1088/1361-6528/ab483c Hensen, 2001, The relation between morphology and hydrotreating activity for supported MoS2 particles, J. Catal., 199, 224, 10.1006/jcat.2000.3158 Cesano, 2011, Model oxide supported MoS2 HDS catalysts: structure and surface properties, Catal. Sci. Technol., 1, 123, 10.1039/c0cy00050g Calais, 1998, Crystallite size determination of highly dispersed unsupported MoS2 catalysts, J. Catal., 174, 130, 10.1006/jcat.1998.1934 Pollack, 1979, Identification by X-ray diffraction of MoS in used CoMoAlO desulfurization catalysts, J. Catal., 59, 452, 10.1016/S0021-9517(79)80015-9 Sanders, 1986, Transmission electron microscopy of catalysts, J. Electron Microsc. Tech., 3, 67, 10.1002/jemt.1060030108 Hall, 2000, Debye function analysis of structure in diffraction from nanometer-sized particles, J. Appl. Phys., 87, 1666, 10.1063/1.372075 Beyerlein, 2013, A review of Debye function analysis, Powder Diffract., 28, S2, 10.1017/S0885715613001218 Billinge, 2008, Nanoscale structural order from the atomic pair distribution function (PDF): There’s plenty of room in the middle, J. Solid State Chem., 181, 1695, 10.1016/j.jssc.2008.06.046 Neder, 2005, Structure of nanoparticles from powder diffraction data using the pair distribution function, J. Phys. Condens. Matter, 17, S125, 10.1088/0953-8984/17/5/013 Billinge, 2007, The problem with determining atomic structure at the nanoscale, Science., 316, 561, 10.1126/science.1135080 Pakharukova, 2020, Total scattering Debye function analysis: effective approach for structural studies of supported MoS2-based hydrotreating catalysts, Ind. Eng. Chem. Res., 59, 10914, 10.1021/acs.iecr.0c01254 Egami, 2012 Pakharukova, 2014, Alumina-supported platinum catalysts: local atomic structure and catalytic activity for complete methane oxidation, Appl. Catal. A Gen., 486, 12, 10.1016/j.apcata.2014.08.014 Page, 2004, Direct observation of the structure of gold nanoparticles by total scattering powder neutron diffraction, Chem. Phys. Lett., 393, 385, 10.1016/j.cplett.2004.05.107 Petkov, 2014, Solving the nanostructure problem: exemplified on metallic alloy nanoparticles, Nanoscale., 6, 10048, 10.1039/C4NR01633E Pakharukova, 2015, Structure of copper oxide species supported on monoclinic zirconia, J. Phys. Chem. C, 119, 28828, 10.1021/acs.jpcc.5b06331 Chupas, 2009, Application of high-energy X-rays and pair-distribution-function analysis to nano-scale structural studies in catalysis, Catal. Today, 145, 213, 10.1016/j.cattod.2009.03.026 Gilbert, 2008, Finite size effects on the real-space pair distribution function of nanoparticles, J. Appl. Crystallogr., 41, 554, 10.1107/S0021889808007905 Masadeh, 2007, Quantitative size-dependent structure and strain determination of CdSe nanoparticles using atomic pair distribution function analysis, Phys. Rev. B, 76, 115413, 10.1103/PhysRevB.76.115413 Kodama, 2006, Finite size effects of nanoparticles on the atomic pair distribution functions, Acta Crystallogr. Sect. A Found. Crystallogr., 62, 444, 10.1107/S0108767306034635 Farrow, 2007, PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals, J. Phys. Condens. Matter, 19, 335219, 10.1088/0953-8984/19/33/335219 Guinier, 1963 Olds, 2015, DShaper : an approach for handling missing low- Q data in pair distribution function analysis of nanostructured systems, J. Appl. Crystallogr., 48, 1651, 10.1107/S1600576715016581 Usher, 2018, A numerical method for deriving shape functions of nanoparticles for pair distribution function refinements, Acta Crystallogr. Sect. A Found. Adv., 74, 322, 10.1107/S2053273318004977 Page, 2011, Building and refining complete nanoparticle structures with total scattering data, J. Appl. Crystallogr., 44, 327, 10.1107/S0021889811001968 Petkov, 2009, Size, shape, and internal atomic ordering of nanocrystals by atomic pair distribution functions: a comparative study of γ-Fe2O3 nanosized spheres and tetrapods, J. Am. Chem. Soc., 131, 14264, 10.1021/ja9067589 Liu, 2017, Quantitative analysis of the morphology of {101} and {001} faceted anatase TiO2 nanocrystals and its implication on photocatalytic activity, Chem. Mater., 29, 5591, 10.1021/acs.chemmater.7b01172 Yatsenko, 2018, DIANNA (diffraction analysis of nanopowders) – a software for structural analysis of nanosized powders, Zeitschrift Für Krist. Cryst. Mater., 233, 61, 10.1515/zkri-2017-2056 Yatsenko, 2012, DIANNA (diffraction analysis of Nanopowders): software for structural analysis of ultradisperse systems by X-ray methods, Bull. Russ. Acad. Sci. Phys., 76, 382, 10.3103/S1062873812030410 Ashiotis, 2015, The fast azimuthal integration Python library: pyFAI, J. Appl. Crystallogr., 48, 510, 10.1107/S1600576715004306 Qiu, 2004, PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data, J. Appl. Crystallogr., 37, 10.1107/S0021889804011744 Debye, 1915, Zerstreuung von Röntgenstrahlen, Ann. Phys., 351, 809, 10.1002/andp.19153510606 Lee, 2012, Morphological determination of face-centered-cubic metallic nanoparticles by X-ray diffraction, J. Colloid Interface Sci., 369, 129, 10.1016/j.jcis.2011.12.053 2011 Lauritsen, 2007, Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts, J. Catal., 249, 220, 10.1016/j.jcat.2007.04.013 Grønborg, 2018, Visualizing hydrogen-induced reshaping and edge activation in MoS2 and Co-promoted MoS2 catalyst clusters, Nat. Commun., 9, 2211, 10.1038/s41467-018-04615-9 Chen, 2014, IR spectroscopic evidence for MoS2 morphology change with sulfidation temperature on MoS2/Al2O3 catalyst, J. Phys. Chem. C, 118, 30039, 10.1021/jp510470g Okamoto, 2009, Effect of sulfidation temperature on the intrinsic activity of Co–MoS2 and Co–WS2 hydrodesulfurization catalysts, J. Catal., 265, 216, 10.1016/j.jcat.2009.05.003 Wang, 2021, Sulfidation of MoO3/γ-Al2O3 towards a highly efficient catalyst for CH4 reforming with H2S, Catal. Sci. Technol., 11, 1125, 10.1039/D0CY02226H Inamura, 1994, The role of co in unsupported Co-Mo sulfides in the hydrodesulfurization of thiophene, J. Catal., 147, 515, 10.1006/jcat.1994.1168 Afanasiev, 2010, The influence of reducing and sulfiding conditions on the properties of unsupported MoS2-based catalysts, J. Catal., 269, 269, 10.1016/j.jcat.2009.11.004 Mazoyer, 2005, In situ EXAFS study of the sulfidation of an hydrotreating catalyst doped with a non chelating organic additive, Oil Gas Sci. Technol., 60, 791, 10.2516/ogst:2005056