Ứng dụng vỏ ngao trong việc phục hồi trầm tích biển

Maheshkumar Prakash Patil1, Dae In Lee2, Un-Gi Hwang2, Yong Soo Joo3, Kyunghoi Kim4
1Industry-University Cooperation Foundation, Pukyong National University, Busan, Republic of Korea
2Marine Environmental Management Division, National Institute of Fisheries Science, Busan, Republic of Korea
3Department for Urban & Environment Research, Gyeongnam Institute, Changwon, Republic of Korea
4Department of Ocean Engineering, Pukyong National University, Busan, Republic of Korea

Tóm tắt

Mục tiêu của bài báo này là xem xét việc sử dụng vỏ ngao thải trong việc phục hồi trầm tích biển. Trầm tích đóng vai trò là nguồn và bể lưu trữ ô nhiễm, tạo ra các rủi ro lâu dài cho con người và hệ sinh thái vì chúng tích tụ cả ô nhiễm vô cơ và hữu cơ. Tương tự, vỏ ngao được tạo ra như một loại chất thải và gây ra các vấn đề kinh tế - xã hội và môi trường do công nghệ quản lý chưa đủ hiệu quả. Do đó, việc hiểu cách mà những vỏ ngao này kiểm soát ô nhiễm trong trầm tích là rất quan trọng. Hàng triệu con ngao được nuôi trồng trên toàn thế giới hàng năm, và vỏ ngao được tạo ra như một chất thải từ các ngành công nghiệp thực phẩm. Bởi vì vỏ ngao phong phú và giá rẻ, nhiều nhà nghiên cứu đang tập trung vào ứng dụng của chúng trong việc phục hồi trầm tích. Vỏ ngao được xử lý bằng phương pháp nhiệt để kích hoạt và được áp dụng như những vật liệu hoạt tính trong phục hồi trầm tích thông qua việc bao phủ trầm tích và trộn lẫn. Việc xử lý trầm tích có thể được thực hiện thông qua việc bao phủ vật liệu hoạt tính tại chỗ hoặc bằng cách nạo vét và xử lý trầm tích ngoài hiện trường. Vỏ ngao đã được báo cáo là những vật liệu tuyệt vời cho phục hồi trầm tích vì chúng cải thiện độ pH và tiềm năng oxy hóa - khử, đồng thời giảm nồng độ nitơ, phosphate, hydro sulfua và kim loại nặng trong trầm tích và nước. Hơn nữa, việc sử dụng vỏ ngao cho thấy khả năng cải thiện điều kiện sinh thái của các môi trường sống đáy và thúc đẩy sự phát triển của đa dạng sinh học vi sinh. Việc xử lý trầm tích bằng cách bao phủ trầm tích tại chỗ bằng vỏ ngao tốt hơn nhiều so với xử lý ngoài hiện trường vì không cần nạo vét và di chuyển trầm tích, đồng thời nó cũng giảm sự tái treo các chất ô nhiễm trong cột nước. Vỏ ngao là một giải pháp tự nhiên để kiểm soát ô nhiễm biển. Dựa trên một số cuộc khảo sát, đã chỉ ra rằng vỏ ngao có khả năng giảm ô nhiễm cả về mặt vật lý thông qua sự hấp phụ và về mặt hóa học thông qua kết tủa và biến đổi hóa học. Nghiên cứu này cung cấp thông tin rộng rãi về dinh dưỡng trong trầm tích, các chất độc hại và quản lý kim loại nặng.

Từ khóa

#vỏ ngao #phục hồi trầm tích #ô nhiễm môi trường #vật liệu hoạt tính #cạnh tranh sinh thái

Tài liệu tham khảo

Abinaya S, Venkatesh SP (2016) An effect on oyster shell powder’s mechanical properties in self-compacting concrete. Int J Innov Res Sci Eng Tech 5(6):11785–11789. https://doi.org/10.15680/IJIRSET.2016.0506296 Alidoust D, Kawahigashi M, Yoshizawa S, Sumida H, Watanabe M (2015) Mechanism of cadmium biosorption from aqueous solutions using calcined oyster shells. J Environ Manage 150:103–110. https://doi.org/10.1016/j.jenvman.2014.10.032 An Y, Hong S, Yoon SJ, Cha J, Shin KH, Khim JS (2020) Current contamination status of traditional and emerging persistent toxic substances in the sediments of Ulsan Bay. South Korea Mar Poll Bull 160:111560. https://doi.org/10.1016/j.marpolbul.2020.111560 Ansari TM, Marr IL, Tariq N (2004) Heavy metals in marine pollution perspective-a mini review. J App Sci 4(1):1–20. https://doi.org/10.3923/jas.2004.1.20 Asaoka S, Yamamoto T, Kondo S, Hayakawa S (2009) Removal of hydrogen sulfide using crushed oyster shell from pore water to remediate organically enriched coastal marine sediments. Biores Technol 100(18):4127–4132. https://doi.org/10.1016/j.biortech.2009.03.075 Baek EY (2021) Oyster shell recycling and marine ecosystems: a comparative analysis in the Republic of Korea and Japan. J Coast Res 114:350–354. https://doi.org/10.2112/JCR-SI114-071.1 Barra E, Riminucci F, Dinelli E, Albertazzi S, Giordano P, Ravaioli M, Capotondi L (2020) Natural versus anthropic influence on North Adriatic coast detected by geochemical analyses. Appl Sci 10(18):6595. https://doi.org/10.3390/app10186595 Bi D, Yuan G, Wei J, Xiao L, Feng L (2020) Conversion of oyster shell waste to amendment for immobilising cadmium and arsenic in agricultural soil. Bull Environ Contam Toxicol 105:277–282. https://doi.org/10.1007/s00128-020-02906-w Bogdal C, Schmid P, Zennegg M, Anselmetti FS, Scheringer M, Hungerbühler K (2009) Blast from the past: melting glaciers as a relevant source for persistent organic pollutants. Environ Sci Technol 43(21):8173–8177. https://doi.org/10.1021/es901628x Boguta P, Skic K, Baran A, Szara-Bąk M (2022) The influence of the physicochemical properties of sediment on the content and ecotoxicity of trace elements in bottom sediments. Chemosphere 287:132366. https://doi.org/10.1016/j.chemosphere.2021.132366 Bourrat X, Francke L, Lopez E, Rousseau M, Stempflé P, Angellier M, Albéric P (2007) Nacre biocrystal thermal behaviour. CrystEngComm 9(12):1205–1208. https://doi.org/10.1039/B709388H Briffa J, Sinagra E, Blundell R (2020) Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6(9):e04691. https://doi.org/10.1016/j.heliyon.2020.e04691 Caliman FA, Gavrilescu M (2009) Pharmaceuticals, personal care products and endocrine disrupting agents in the environment–a review. CLEAN–Soil Air Water 37(4‐5):277–303. https://doi.org/10.1002/clen.200900038 Cardoso SJ, Quadra GR, Resende NDS, Roland F (2019) The role of sediments in the carbon and pollutant cycles in aquatic ecosystems. Acta Limnol Brasil 31:e201. https://doi.org/10.1590/S2179-975X8918 Chang HY, Kuo YL, Liu JC (2019) Fluoride at waste oyster shell surfaces–role of magnesium. Sci Total Environ 652:1331–1338. https://doi.org/10.1016/j.scitotenv.2018.10.238 Chen Y, Xu J, Lv Z, Huang L, Jiang J (2018) Impacts of biochar and oyster shells waste on the immobilization of arsenic in highly contaminated soils. J Environ Manag 217:646–653. https://doi.org/10.1016/j.jenvman.2018.04.007 Dachs J, Méjanelle L (2010) Organic pollutants in coastal waters, sediments, and biota: a relevant driver for ecosystems during the anthropocene? Estuaries Coasts 33:1–14. https://doi.org/10.1007/s12237-009-9255-8 Diaz RJ, Rosenberg R (2001) Overview of anthropogenically-induced hypoxic effects on marine benthic fauna. Coastal Hypoxia: Consequences for Living Resources and Ecosystems 58:129–145. https://doi.org/10.1029/CE058p0129 Diaz RJ, Solan M, Valente RM (2004) A review of approaches for classifying benthic habitats and evaluating habitat quality. J Environ Manag 73(3):165–181. https://doi.org/10.1016/j.jenvman.2004.06.004 FAO (2018) Available at: https://www.fao.org/fishery/en/statistics/en Furlan AP, Razakamanantsoa A, Ranaivomanana H, Levacher D, Katsumi T (2018) Shear strength performance of marine sediments stabilized using cement, lime and fly ash. Construct Build Mater 184:454–463. https://doi.org/10.1016/j.conbuildmat.2018.06.231 Furukawa K (2015) Eutrophication in Tokyo bay. Eutrophication and oligotrophication in Japanese estuaries: the present status and future tasks. pp.5–37. https://doi.org/10.1007/978-94-017-9915-7_2 Glibert PM, Seitzinger S, Heil CA, Burkholder JM, Parrow MW, Codispoti LA, Kelly V (2005) The role of eutrophication in the global proliferation of harmful algal blooms. Oceanography 18(2):198–209. https://doi.org/10.5670/oceanog.2005.54 Gruber N (2008) The marine nitrogen cycle: overview and challenges. Nitrogen in the Marine Environment, Elsevier 2:1–50 Hamester MRR, Balzer PS, Becker D (2012) Characterization of calcium carbonate obtained from oyster and mussel shells and incorporation in polypropylene. Mater Res 15:204–208. https://doi.org/10.1590/S1516-14392012005000014 Herbert RA (1999) Nitrogen cycling in coastal marine ecosystems. FEMS Microb Rev 23(5):563–590. https://doi.org/10.1111/j.1574-6976.1999.tb00414.x Jeong I, Kim K (2022) Utilizing a granulated coal bottom ash and oyster shells for nutrient removal in eutrophic sediments. Mar Poll Bull 177:113549. https://doi.org/10.1016/j.marpolbul.2022.113549 John AT, Mary J (2016) Chemical composition of the edible oyster shell Crassostrea madrasensis (Preston 1916). J Mar Biol Aqua 2(2):1–4. https://doi.org/10.15436/2381-0750.16.972 Kanaya G, Nakamura Y, Koizumi T (2018) Ecological thresholds of hypoxia and sedimentary H2S in coastal soft-bottom habitats: a macroinvertebrate-based assessment. Mar Environ Res 136:27–37. https://doi.org/10.1016/j.marenvres.2018.02.007 Kim HC, Woo HE, Jeong I, Oh SJ, Lee SH, Kim K (2019a) Changes in sediment properties caused by a covering of oyster shells pyrolyzed at a low temperature. J Kor Soc Mar Environ Safety 25(1):74–80. https://doi.org/10.7837/kosomes.2019.25.1.074 Kim K, Suh YC, Lee IC, Choi CG, Kim K (2019b) Changes in permeability and benthic environment of coastal sediment based on calcium salt supplier. J Coast Res 91(SI):311–315. https://doi.org/10.2112/SI91-063.1 KMI (2017) Korea Maritime Institute Fisheries Outlook Center. http://www.foc.re.kr/web/obstats/stats.do?rbsIdx=87 Knezovich JP, Steichen DJ, Jelinski JA, Anderson SL (1996) Sulfide tolerance of four marine species used to evaluate sediment and pore-water toxicity. Bull Environ Contam Toxicol 57:450–457. https://doi.org/10.1007/s001289900211 Kwon HB, Lee CW, Jun BS, Weon SY, Koopman B (2004) Recycling waste oyster shells for eutrophication control. Resour Conserv Recycl 41(1):75–82. https://doi.org/10.1016/j.resconrec.2003.08.005 Lian W, Li H, Yang J, Joseph S, Bian R, Liu X, Zheng J, Drosos M, Zhang X, Li L, Shan S (2021) Influence of pyrolysis temperature on the cadmium and lead removal behavior of biochar derived from oyster shell waste. Bioresour Technol Report 15:100709. https://doi.org/10.1016/j.biteb.2021.100709 Lin PY, Wu HM, Hsieh SL, Li JS, Dong C, Chen CW, Hsieh S (2020) Preparation of vaterite calcium carbonate granules from discarded oyster shells as an adsorbent for heavy metal ions removal. Chemosphere 254:126903. https://doi.org/10.1016/j.chemosphere.2020.126903 Lofrano G, Libralato G, Minetto D, De Gisi S, Todaro F, Conte B, Calabrò D, Quatraro L, Notarnicola M (2017) In situ remediation of contaminated marinesediment: an overview. Environ Sci Poll Res 24:5189–5206. https://doi.org/10.1007/s11356-016-8281-x Luo H, Huang G, Fu X, Liu X, Zheng D, Peng J, Zhang K, Huang B, Fan L, Chen F, Sun X (2013) Waste oyster shell as a kind of active filler to treat the combined wastewater at an estuary. J Environ Sci 25(10):2047–2055. https://doi.org/10.1016/S1001-0742(12)60262-9 MacEachern D, Sadeghian P (2018) Recycled ground oyster shell for use as filler in self-consolidated grout. In CSCE Annual Conference Fredericton, NB. Canadian Society for Civil Engineering, Canada Mackin JE, Aller RC (1984) Ammonium adsorption in marine sediments 1. Limnol Ocean 29(2):250–257. https://doi.org/10.4319/lo.1984.29.2.0250 Martins MC, Santos EB, Marques CR (2017) First study on oyster-shell-based phosphorous removal in saltwater—a proxy to effluent bioremediation of marine aquaculture. Sci Total Environ 574:605–615. https://doi.org/10.1016/j.scitotenv.2016.09.103 Meric D, Barbuto SM, Alshawabkeh AN, Shine JP, Sheahan TC (2012) Effect of reactive core mat application on bioavailability of hydrophobic organic compounds. Sci Total Environ 423:168–175. https://doi.org/10.1016/j.scitotenv.2012.01.042 Namasivayam C, Sakoda A, Suzuki M (2005) Removal of phosphate by adsorption onto oyster shell powder—kinetic studies. J Chem Tech Biotechnol 80(3):356–358. https://doi.org/10.1002/jctb.1175 Ngatia L, Grace JM III, Moriasi D, Taylor R (2019) Nitrogen and phosphorus eutrophication in marine ecosystems. Monitor Mar Poll 1:1–17. https://doi.org/10.5772/intechopen.81869 Patil MP, Woo HE, Kim JO, Kim K (2022a) Field study on short-term changes in benthic environment and benthic microbial communities using pyrolyzed oyster shells. Sci Total Environ 824:153891. https://doi.org/10.1016/j.scitotenv.2022.153891 Patil MP, Woo HE, Lee IC, Nakashita S, Kim K, Kim JO, Kim K (2022b) A microcosm study of microbial community profiles during sediment remediation using pyrolyzed oyster shells. J Environ Manage 316:115229. https://doi.org/10.1016/j.jenvman.2022.115229 Patil MP, Woo HE, Yoon S, Kim K (2023) Influence of oyster shells pyrolysis temperature on sediment permeability and remediation. J Mar Sci Eng 11(5):934. https://doi.org/10.3390/jmse11050934 Rahman MA, Rahman MA, Samad A, Alam AS (2008) Removal of arsenic with oyster shell: experimental measurements. Pak J Analyt Environ Chem 9(2):9 Ramakrishna C, Thenepalli T, Nam SY, Kim C, Ahn JW (2018) Oyster shell waste is alternative sources for calcium carbonate (CaCO3) instead of natural limestone. J Energy Eng 27(1):59–64. https://doi.org/10.5855/ENERGY.2018.27.1.059 Shah SB (2021) Heavy metals in the marine environment—an overview. Heavy Metals in Scleractinian Corals. SpringerBriefs in Earth Sciences. Springer, Cham. pp.1–26. https://doi.org/10.1007/978-3-030-73613-2_1 Sharifuzzaman SM, Rahman H, Ashekuzzaman SM, Islam MM, Chowdhury SR, Hossain MS (2016) Heavy metals accumulation in coastal sediments. Environmental remediation technologies for metal-contaminated soils. pp.21–42. https://doi.org/10.1007/978-4-431-55759-3_2 Soisuwan S, Phommachant J, Wisaijorn W, Praserthdam P (2014) The characteristics of green calcium oxide derived from aquatic materials. Proced Chem 9:53–61. https://doi.org/10.1016/j.proche.2014.05.007 Tamjidi S, Ameri A (2020) A review of the application of sea material shells as low cost and effective bio-adsorbent for removal of heavy metals from wastewater. Environ Sci Poll Res 27:31105–31119. https://doi.org/10.1007/s11356-020-09655-7 Tomatsuri M, Kon K (2017) Effects of dead oyster shells as a habitat for the benthic faunal community along rocky shore regions. Hydrobiologia 790:225–232. https://doi.org/10.1007/s10750-016-3033-y Tran TT, Tran NNT, Sugiyama S, Liu JC (2021) Enhanced phosphate removal by thermally pretreated waste oyster shells. J Mater Cycles Waste Manage 23:177–185. https://doi.org/10.1007/s10163-020-01112-4 Ulagesan S, Krishnan S, Nam TJ, Choi YH (2020) A review of bioactive compounds in oyster shell and tissues. Front Bioeng Biotechnol 10:913839. https://doi.org/10.3389/fbioe.2022.913839 Wang Y, Ji M, Wu M, Weng L, Wang Y, Hu L, Cao MJ (2022) Toward green farming technologies: a case study of oyster shell application in fruit and vegetable production in xiamen. Sustainability 15(1):663. https://doi.org/10.3390/su15010663 Wang YP, Voulgaris G, Li Y, Yang Y, Gao J, Chen J, Gao S (2013) Sediment resuspension, flocculation, and settling in a macrotidal estuary. J Geoph Res Ocean 118(10):5591–5608. https://doi.org/10.1002/jgrc.20340 Wardecki D, Przeniosło R, Brunelli M (2008) Internal pressure in annealed biogenic aragonite. CrystEngComm 10(10):1450–1453. https://doi.org/10.1039/B805508D Woo HE, Jeong I, Kim JO, Kim YR, Lee IC, Kim K (2023) Field experiments on chemical and biological changes of thin-layer oyster shells capping sediments in dense aquaculture area. Environ Res 237:116893. https://doi.org/10.1016/j.envres.2023.116893 Woo HE, Jeong I, Lee IC, Kim K (2021) A study on the change of shear strength of coastal muddy sediment due to the mixing of oyster shells with different pyrolysis temperature and particle size. J Soil Ground Environ 26(1):17–23. https://doi.org/10.7857/JSGE.2021.26.1.017 Woo HE, Kim K, Lee IC, Kim K (2018) A study on phosphate removal efficiency by pre-treatment conditioning of oyster shells. J Kor Soc Mar Environ Safe 24(2):196–202. https://doi.org/10.7837/kosomes.2018.24.2.196 Xing H, Yang X, Xu C, Ye G (2009) Strength characteristics and mechanisms of salt-rich soil–cement. Eng Geol 103(1–2):33–38. https://doi.org/10.1016/j.enggeo.2008.07.011 Xu S, Bian M, Li C, Wu X, Wang Z (2018) Effects of calcium concentration and differential settlement on permeability characteristics of bentonite-sand mixtures. App Clay Sci 153:16–22. https://doi.org/10.1016/j.clay.2017.11.029 Yamamoto T, Kondo S, Kim KH, Asaoka S, Yamamoto H, Tokuoka M, Hibino T (2012) Remediation of muddy tidal flat sediments using hot air-dried crushed oyster shells. Mar Poll Bull 64(11):2428–2434. https://doi.org/10.1016/j.marpolbul.2012.08.002 Yamamoto T, Nakajima T, Asaoka S (2022) Changes in physical and chemical characteristics and reactivity to hydrogen sulfide of calcined oyster shells. Fish Sci 88(5):609–616. https://doi.org/10.1007/s12562-022-01620-2 Yang-Zhou CH, Cao JX, Dong SS, Chen SH, Michael RN (2022) Phosphorus co-existing in water: a new mechanism to boost boron removal by calcined oyster shell powder. Molecules 27(1):54. https://doi.org/10.3390/molecules27010054 Yao Z, Xia M, Li H, Chen T, Ye Y, Zheng H (2014) Bivalve shell: not an abundant useless waste but a functional and versatile biomaterial. Critic Rev Environ Sci Technol 44(22):2502–2530. https://doi.org/10.1080/10643389.2013.829763 Yoon GL, Kim BT, Kim BO, Han SH (2003) Chemical–mechanical characteristics of crushed oyster-shell. Waste Manage 23(9):825–834. https://doi.org/10.1016/S0956-053X(02)00159-9 Zhang Y, Labianca C, Chen L, De Gisi S, Notarnicola M, Guo B, Sun J, Ding S, Wang L (2021) Sustainable ex-situ remediation of contaminated sediment: a review. Environ Poll 287:117333. https://doi.org/10.1016/j.envpol.2021.117333 Zheng Y, Zhang Y, Wan D, Han S, Duan M, Yang H (2019) Experimental study on physical and mechanical properties of expansive soil polluted by heavy metals. In IOP Conference Series: Earth and Environmental Science 218(1):012022. https://doi.org/10.1088/1755-1315/218/1/012022 Zhong G, Liu Y, Tang Y (2021) Oyster shell powder for Pb (II) immobilization in both aquatic and sediment environments. Environ Geochem Health 43:1891–1902. https://doi.org/10.1007/s10653-020-00768-z Zoumis T, Schmidt A, Grigorova L, Calmano W (2001) Contaminants in sediments: remobilisation and demobilisation. Sci Total Environ 266(1–3):195–202. https://doi.org/10.1016/S0048-9697(00)00740-3