Application of ostracod-based carbonate clumped-isotope thermometry to paleo-elevation reconstruction in a hydrologically complex setting: A case study from the northern Tibetan Plateau
Tài liệu tham khảo
Affek, 2006, Abundance of mass 47 CO2 in urban air, car exhaust, and human breath, Geochim. Cosmochim. Acta., 70, 1, 10.1016/j.gca.2005.08.021
Bershaw, 2012, Stable isotopes of modern water across the Himalaya and eastern Tibetan Plateau: Implications for estimates of paleoelevation and paleoclimate, J. Geophys. Res., 117, n/a, 10.1029/2011JD016132
Bhatia, 2021, Leaf physiognomy records the Miocene intensification of the South Asia Monsoon, Glob. Planet. Change., 196, 103365, 10.1016/j.gloplacha.2020.103365
Bonifacie, 2017, Calibration of the dolomite clumped isotope thermometer from 25 to 350°C, and implications for a universal calibration for all (Ca, Mg, Fe)CO3 carbonates, Geochim. Cosmochim. Acta., 200, 255, 10.1016/j.gca.2016.11.028
Chang, 2015, Magnetostratigraphy of Cenozoic deposits in the western Qaidam Basin and its implication for the surface uplift of the northeastern margin of the Tibetan Plateau, Earth Planet. Sci. Lett., 430, 271, 10.1016/j.epsl.2015.08.029
Chen, 2019, A Late Miocene terrestrial temperature history for the northeastern Tibetan Plateau's period of tectonic expansion, Geophys. Res. Lett., 46, 8375, 10.1029/2019GL082805
Cheng, 2021, Cenozoic evolution of the Qaidam basin and implications for the growth of the northern Tibetan plateau: A review, Earth-Sci. Rev., 220, 103730, 10.1016/j.earscirev.2021.103730
Cyr, 2005, Geochemical evaluation of Fenghuoshan Group lacustrine carbonates, north-central Tibet: implications for the paleoaltimetry of the Eocene Tibetan Plateau, J. Geol., 113, 517, 10.1086/431907
Dai, 2020, Burial and exhumation of the Hoh Xil Basin, northern Tibetan Plateau: Constraints from detrital (U-Th)/He ages, Basin Res., 32, 894, 10.1111/bre.12405
DeCelles, 2007, High and dry in central Tibet during the late Oligocene, Earth Planet. Sci. Lett., 253, 389, 10.1016/j.epsl.2006.11.001
Deng, 2015, Paleoaltimetry reconstructions of the Tibetan Plateau: progress and contradictions, Natl. Sci. Rev., 2, 417, 10.1093/nsr/nwv062
Deng, 2019, Review: implications of vertebrate fossils for paleo-elevations of the Tibetan Plateau, Glob. Planet. Change., 174, 58, 10.1016/j.gloplacha.2019.01.005
Dennis, 2011, Defining an absolute reference frame for “clumped” isotope studies of CO2, Geochim. Cosmochim. Acta., 75, 7117, 10.1016/j.gca.2011.09.025
Ding, 2014, The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene-Eocene Linzhou Basin, Earth Planet. Sci. Lett., 392, 250, 10.1016/j.epsl.2014.01.045
Ding, 2017, Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon, Geology, 45, 215, 10.1130/G38583.1
Eiler, 2004, 18O13C16O in Earth's atmosphere, Geochim. Cosmochim. Acta., 68, 4767, 10.1016/j.gca.2004.05.035
Elliott, 1986, Deltas, 113
Fang, 2019, Paleogene global cooling-induced temperature feedback on chemical weathering, as recorded in the northern Tibetan Plateau, Geology, 47, 992, 10.1130/G46422.1
Fang, 2020, Revised chronology of central Tibet uplift (Lunpola Basin), Sci. Adv., 6, eaba7298, 10.1126/sciadv.aba7298
Farnsworth, 2019, Climate Sensitivity on Geological Timescales Controlled by Nonlinear Feedbacks and Ocean Circulation, Geophys. Res. Lett., 46, 9880, 10.1029/2019GL083574
Farnsworth, 2019, Past East Asian monsoon evolution controlled by paleogeography, not CO2, Sci. Adv., 5, eaax1697, 10.1126/sciadv.aax1697
Farnsworth, 2021, Paleoclimate Model-Derived thermal Lapse Rates: Towards Increasing Precision in Paleoaltimetry Studies, Earth Planet. Sci. Lett., 564, 116903, 10.1016/j.epsl.2021.116903
Foster, 2017, Future climate forcing potentially without precedent in the last 420 million years, Nat. Commun., 8, 14845, 10.1038/ncomms14845
Garzione, 2000, Predicting paleoelevation of Tibet and the Himalaya from δ18O vs altitude gradients in meteoric water across the Nepal Himalaya, Earth Planet. Sci. Lett., 183, 215, 10.1016/S0012-821X(00)00252-1
Gough, 1981, Solar interior structure and luminosity variations, Sol. Phys., 74, 21, 10.1007/BF00151270
Guo, 2016, Spatio-temporal variability of vertical gradients of major meteorological observations around the Tibetan Plateau, Int. J. Climatol., 36, 1901, 10.1002/joc.4468
Henkes, 2014, Temperature limits for preser-vation of primary calcite clumped isotope paleotemperatures, Geochim. Cosmochim. Acta., 139, 362, 10.1016/j.gca.2014.04.040
Heip, 1976, The life-cycle of Cyprideis torosa (Crustacea, Ostracod), Oecologia, 24, 229, 10.1007/BF00345475
Herman, 1983, The production of Cyprideis torosa Jones 1850 (Crustacea, Ostracod), Oecologia, 58, 326, 10.1007/BF00385231
Holmes, 1996, Trace-element and stable-isotope geochemistry of non-marine ostracod shells in Quaternary palaeoenvironmental reconstruction, J. Paleolimnol., 15, 223, 10.1007/BF00213042
Holmes, J.A., De Deckker, P., 2012. The chemical composition of ostracod shells: applications in Quaternary Palaeoclimatology. In: Horne, D.J., Holmes, J.A., Rodriguez-Lazaro, J., Viehberg, F. (Eds.), Ostracoda as Proxies for Quaternary Climate Change. Developments in Quaternary Science. Elsevier, Amsterdam, The Netherlands, pp. 131–143.
The Netherlands, pp. 131–143.Huang, H.C., Huang, Q.H., and Ma, Y.S., 1996. Geology of Qaidam and Petroleum Prediction. Geological Publishing House, Beijing, 257 pp. (in Chinese).
Huang, 2015, Water temperature and characteristics of thermal stratification in Nam Co, Tibet. J. Lake Sci., 27, 711, 10.18307/2015.0420
Huntington, 2015, High late Miocene-Pliocene elevation of the Zhada Basin, southwestern Tibetan Plateau, from carbonate clumped isotope thermometry, Geol. Soc. Am. Bull., 127, 181, 10.1130/B31000.1
Huntington, 2015, Carbonate clumped isotope thermometry in continental tectonics, Tectonophysics, 647-648, 1, 10.1016/j.tecto.2015.02.019
Ingalls, 2018, Paleocene to Pliocene low-latitude, high-elevation basins of southern Tibet: implications for tectonic models of India-Asia collision, Cenozoic climate, and geochemical weathering, Geol. Soc. Am. Bull., 130, 307, 10.1130/B31723.1
Ji, 2017, Highresolution magnetostratigraphic study of the Paleogene-Neogene strata in the Northern Qaidam Basin: implications for the growth of the Northeastern Tibetan Plateau, Gondwana Res., 46, 141, 10.1016/j.gr.2017.02.015
Jia, 2008, Soil n-alkane δD vs. altitude gradients along Mount Gongga, China. Geochim. Cosmochim. Acta., 72, 5165, 10.1016/j.gca.2008.08.004
Kiehl, 2013, Sensitivity of the Palaeocene-Eocene Thermal Maximum climate to cloud properties, Philos. T. R. Soc. A., 371, 20130093, 10.1098/rsta.2013.0093
Kempf, 2009, Sedimentology, sedimentary petrology, and paleoecology of the monsoon-driven, fluvio-lacustrine Zhada Basin, SW-Tibet. Sediment. Geol., 222, 27, 10.1016/j.sedgeo.2009.07.004
Lear, 2000, Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite, Science, 287, 269, 10.1126/science.287.5451.269
Leary, 2017, Evidence from paleosols for low to moderate elevation of the India-Asia suture zone during mid-Cenozoic time, Geology, 45, 399, 10.1130/G38830.1
Leng, M.J., Marshall, J.D., 2004. Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Sci. Rev. 23, 811-831.
Li, 2017, Spatial distribution and controlling factors of stable isotopes in meteoric waters on the Tibetan Plateau: Implications for paleoelevation reconstruction, Earth Planet. Sci. Lett., 460, 302, 10.1016/j.epsl.2016.11.046
Li, 2018, Carbonate stable and clumped isotopic evidence for Late Eocene Moderate to high elevation of the east-central Tibetan Plateau and its geodynamic implications, Geol. Soc. Am. Bull., 131, 831
Li, 2021, Mass 47 clumped isotope signatures in modern lacustrine authigenic carbonates in Western China and other regions and implications for paleotemperature and paleoelevation reconstructions, Earth Planet. Sci. Lett., 562, 10.1016/j.epsl.2021.116840
Li, 2021, Orographic evolution of northern Tibet shaped vegetation and plant diversity in eastern Asia, Sci. Adv., 7, eabc7741, 10.1126/sciadv.abc7741
Liu, 2014, Cenozoic environmental changes in the northern Qaidam Basin inferred from n-alkane records, Acta Geol. Sin-Engl., 88, 1547, 10.1111/1755-6724.12317
Lloyd, 2018, Experimental calibration of clumped isotope reordering in dolomite, Geochim. Cosmochim. Acta., 242, 1, 10.1016/j.gca.2018.08.036
Lu, 2009, Magnetostratigraphy of the Dahonggou section, northern Qaidam Basin and its bearing on Cenozoic tectonic evolution of the Qilian Shan and Altyn Tagh Fault, Earth Planet. Sci. Lett., 288, 539, 10.1016/j.epsl.2009.10.016
Lunt, 2016, Palaeogeographic controls on climate and proxy interpretation, Clim. Past., 12, 1181, 10.5194/cp-12-1181-2016
Marzocchi, 2015, Orbital control on late Miocene climate and the North African monsoon: Insight from an ensemble of sub-precessional simulations, Clim. Past., 11, 1271, 10.5194/cp-11-1271-2015
Miall, A.D. 1996. The Geology of Fluvial Deposits, Sedimentary Facies, Basin Analysis, and Petroleum Geology. Springer, New York, 582 pp.
Mischke, 2010, Quantitative relationship between water-depth and sub-fossil ostracod assemblages in Lake Donggi Cona, Qinghai Province, China. J. Paleolimnol., 43, 589, 10.1007/s10933-009-9355-2
Meisch, C., 2000. Freshwater Ostracoda of Western and Central Europe. Spektrum Akadem. Verlag, Heildeberg, Germany, 522 pp.
Miao, 2011, Miocene pollen record of KC-1 core in the Qaidam Basin, NE Tibetan Plateau and implications for evolution of the East Asian monsoon, Palaeogeogr. Palaeoclimatol. Palaeoecol., 299, 30, 10.1016/j.palaeo.2010.10.026
Miao, 2016, A late-Eocene palynological record from the Hoh Xil Basin, northern Tibetan Plateau, and its implications for stratigraphic age, paleoclimate and paleoelevation, Gondwana Res., 31, 241, 10.1016/j.gr.2015.01.007
Nie, 2020, Magnetic polarity stratigraphy, provenance, and paleoclimate analysis of Cenozoic strata in the Qaidam Basin, NE Tibetan Plateau, Geol. Soc. Am. Bull., 132, 310, 10.1130/B35175.1
Passey, 2010, High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates, P. Natl. Acad. Sci. USA, 107, 11245, 10.1073/pnas.1001824107
Pint, 2012, Distribution of Cyprideis torosa (Ostracoda) in quaternary athalassic sediments in Germany and its application for palaeoecological reconstructions, Int. Rev. Hydrobiol., 97, 330, 10.1002/iroh.201111495
Poage, 2001, Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: considerations for studies of paleoelevation change, Am. J. Sci., 301, 1, 10.2475/ajs.301.1.1
Poulsen, 2011, Climate change imprinting on stable isotopic compositions of high-elevation meteoric water cloaks past surface elevations of major orogens, Geology, 39, 595, 10.1130/G32052.1
Polissar, 2009, Paleoaltimetry of the Tibetan Plateau from D/H ratios of lipid biomarkers, Earth Planet. Sci. Lett., 287, 64, 10.1016/j.epsl.2009.07.037
QBGMR (Qinghai Bureau of Geology and Mineral Resources), 1991. Regional geology of the Qinghai Province. Geological Publishing House, Beijing, pp.1–662 (in Chinese).
Quade, 2013, The clumped isotope geothermometer in soil and paleosol carbonate, Geochim. Cosmochim. Acta., 105, 92, 10.1016/j.gca.2012.11.031
Quade, J., Leary, R., Dettinger, M.P., Orme, D., Krupa, A., DeCelles, P.G., Kano, A., Kato, H., Waldrip, R., Huang, Kapp, P., 2020. Resetting Southern Tibet: the serious challenge of obtaining primary records of paleoaltimetry. Glob. Planet. Change. 191, 103194.
Rowley, 2001, A new approach to stable isotope-based paleoaltimetry: implications for paleoaltimetry and paleohypsometry of the High Himalaya since the late Miocene, Earth Planet. Sci. Lett., 188, 253, 10.1016/S0012-821X(01)00324-7
Rowley, 2006, Palaeo-altimetry of the late Eocene to Miocene Lunpola Basin, central Tibet, Nature, 439, 677, 10.1038/nature04506
Song, 2017, Intensified aridity in the Qaidam Basin during the middle Miocene: constraints from ostracod, stable isotope and weathering records, Can. J. Earth Sci., 54, 242, 10.1139/cjes-2016-0052
Song, 2018, Qaidam Basin paleosols reflect climate and weathering intensity on the northeastern Tibetan Plateau during the Early Eocene Climatic Optimum, Palaeogeogr. Palaeoclimatol. Palaeoecol., 512, 6, 10.1016/j.palaeo.2018.03.027
Song, 2020, Qaidam Basin leaf fossils show northeastern Tibet was high, wet and cool in the early Oligocene, Earth Planet. Sci. Lett., 537, 10.1016/j.epsl.2020.116175
Song, 2021, Reconstruction of the latest Eocene-early Oligocene paleoenvironment in the Hoh Xil Basin (Central Tibet) based on palynological and ostracod records, J. Asian Earth Sci., 217, 10.1016/j.jseaes.2021.104860
Srivastava, 2021, Climate and vegetation change during the Upper Siwalik-a study based on the palaeobotanical record of the eastern Himalaya, Palaeobio. Palaeoenv., 101, 103, 10.1007/s12549-020-00457-w
Sperber, 2013, The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century, Clim. Dynam., 41, 2711, 10.1007/s00382-012-1607-6
Spicer, 2003, Constant elevation of Southern Tibet over the past 15 million years, Nature, 412, 622, 10.1038/nature01356
Spicer, 2021, Why ‘the uplift of the Tibetan Plateau’is a myth, Natl. Sci. Rev., 8, nwaa091, 10.1093/nsr/nwaa091
Staich, 2016, Eocene to late Oligocene history of crustal shortening within the Hoh Xil Basin and implications for the uplift history of the northern Tibetan Plateau, Tectonics, 35, 862, 10.1002/2015TC003972
Su, 2019, No high Tibetan plateau until the Neogene, Natl. Sci. Rev., 5, eaav2189
Su, 2020, A middle Eocene lowland humid subtropical “Shangri-La” ecosystem in central Tibet, P. Natl. Acad. Sci. USA, 117, 32989, 10.1073/pnas.2012647117
Sun, 2012, Long chain alkenones preserved in Miocene lake sediments, Org. Geochem., 50, 9, 10.1016/j.orggeochem.2012.06.007
Sun, 2007, Calibration of alkenone unsaturation index with growth temperature for a lacustrine species, Chrysotila lamellosa (Haptophyceae), Org. Geochem., 38, 1226, 10.1016/j.orggeochem.2007.04.007
Talbot, 1990, A review of palaeohydrological interpretations of carbon and hydrogen isotopic ratios in primary lacustrine carbonates, Chem. Geol., 80, 261
Valdes, 2017, The BRIDGE HadCM3 family of climate models: HadCM3@Bristol v1.0, Geosci. Model. Dev., 10, 3715, 10.5194/gmd-10-3715-2017
Wang, 2007, Vertebrate paleontology, biostratigraphy, geochronology, and paleoenvironment of Qaidam Basin in northern Tibetan Plateau, Palaeogeogr. Palaeoclimatol. Palaeoecol., 254, 363, 10.1016/j.palaeo.2007.06.007
Wang, 2017, Expansion of the Tibetan plateau during the Neogene, Nat. Commun., 8, 15887, 10.1038/ncomms15887
Wünnemann, 2012, Implications of diverse sedimentation patterns in Hala Lake, Qinghai Province, China for reconstructing Late Quaternary climate, J. Paleolimnol., 48, 725, 10.1007/s10933-012-9641-2
Xia, 2001, Cenozoic Qaidam basin, China: a stronger tectonic inversed, extensional rifted basin, AAPG Bull., 85, 715
Xiong, 2022, The Rise and Demise of the Paleogene Central Tibetan Valley, Sci. Adv., 8, eabj0944, 10.1126/sciadv.abj0944
Yang, 2006, Features of the Cenozoic ostrocod fauna and environmental significance in Qaidam Basin, J. Palaeogeog., 8, 143
Yin, 2008, Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (part 3): structural geology, sedimentation, and regional tectonic reconstruction, Geol. Soc. Am. Bull., 120, 847, 10.1130/B26232.1
Zhuang, 2014, Leaf wax stable isotopes from Northern Tibetan Plateau: implications for uplift and climate since 15 Ma, Earth Planet. Sci. Lett., 390, 186, 10.1016/j.epsl.2014.01.003
Zhuang, 2018, Understanding the geologic evolution of Northern Tibetan Plateau with multiple thermochronometers, Gondwana Res., 58, 195, 10.1016/j.gr.2018.02.014
Zhuang, 2019, Microbial and geochronologic constraints on the Neogene paleotopography of northern Tibetan Plateau, Geophys. Res. Lett., 46, 1312, 10.1029/2018GL081505