Application of normal cones to the computation of solutions of the nonlinear Kolmogorov backward equation
Tài liệu tham khảo
Akrouche, 2022, An interval approach for the availability optimization of multi-state systems in the presence of aleatory and epistemic uncertainties, ASCE-ASME J. Risk Uncertain. Eng. Syst., Part B: Mech. Eng., 8
Augustin, 2014
Bruckstein, 2008, Sparse nonnegative solution of a linear system of equations is unique, 762
Crossman, 2010, Imprecise Markov chains with absorption, Int. J. Approx. Reason., 51, 1085, 10.1016/j.ijar.2010.08.008
De Bock, 2017, The limit behaviour of imprecise continuous-time Markov chains, Int. J. Nonlinear Sci., 27, 159, 10.1007/s00332-016-9328-3
de Cooman, 2016, Imprecise stochastic processes in discrete time: global models, imprecise Markov chains, and ergodic theorems, Int. J. Approx. Reason., 76, 18, 10.1016/j.ijar.2016.04.009
de Cooman, 2009, Imprecise Markov chains and their limit behavior, Probab. Eng. Inf. Sci., 23, 597, 10.1017/S0269964809990039
Erreygers
Erreygers, 2019, Bounding inferences for large-scale continuous-time Markov chains: a new approach based on lumping and imprecise Markov chains, Int. J. Approx. Reason., 115, 96, 10.1016/j.ijar.2019.09.003
Erreygers, 2022, Markovian imprecise jump processes: extension to measurable variables, convergence theorems and algorithms, Int. J. Approx. Reason., 147, 78, 10.1016/j.ijar.2022.05.006
Erreygers, 2018, Imprecise Markov models for scalable and robust performance evaluation of flexi-grid spectrum allocation policies, IEEE Trans. Commun., 66, 5401, 10.1109/TCOMM.2018.2846235
Gruber, 2007
Krak, 2017, Imprecise continuous-time Markov chains, Int. J. Approx. Reason., 88, 452, 10.1016/j.ijar.2017.06.012
Krpelík, 2019, On robust Markov analysis for reliability assessment of complex systems using imprecise Markov chains, 245
Leela, 1969
Lu, 2008, Normal fans of polyhedral convex sets, Set-Valued Anal., 16, 281, 10.1007/s11228-008-0077-9
Miranda, 2007, Marginal extension in the theory of coherent lower previsions, Int. J. Approx. Reason., 46, 188, 10.1016/j.ijar.2006.12.009
Naghshbandi, 2020, A review of methods to study resilience of complex engineering and engineered systems, IEEE Access, 8, 87775, 10.1109/ACCESS.2020.2992239
Nendel, 2021, Markov chains under nonlinear expectation, Math. Finance, 31, 474, 10.1111/mafi.12289
Nendel, 2021, On nonlinear expectations and Markov chains under model uncertainty, Int. J. Approx. Reason., 130, 226, 10.1016/j.ijar.2020.12.013
Rottondi, 2017, Modelling spectrum assignment in a two-service flexi-grid optical link with imprecise continuous-time Markov chains, 1
Troffaes, 2015, Using imprecise continuous time Markov chains for assessing the reliability of power networks with common cause failure and non-immediate repair, 287
Troffaes, 2019, Two-state imprecise Markov chains for statistical modelling of two-state non-Markovian processes, vol. 103, 394
Škulj, 2009, Discrete time Markov chains with interval probabilities, Int. J. Approx. Reason., 50, 1314, 10.1016/j.ijar.2009.06.007
Škulj, 2013, A classification of invariant distributions and convergence of imprecise Markov chains, Linear Algebra Appl., 439, 2542, 10.1016/j.laa.2013.07.001
Škulj, 2015, Efficient computation of the bounds of continuous time imprecise Markov chains, Appl. Math. Comput., 250, 165, 10.1016/j.amc.2014.10.092
Škulj, 2017, Perturbation bounds and degree of imprecision for uniquely convergent imprecise Markov chains, Linear Algebra Appl., 533, 336, 10.1016/j.laa.2017.07.022
Škulj, 2020, Computing bounds for imprecise continuous-time Markov chains using normal cones
Škulj, 2022, A complete characterization of normal cones and extreme points for p-boxes
Škulj, 2022, Normal cones corresponding to credal sets of lower probabilities, Int. J. Approx. Reason., 150, 35, 10.1016/j.ijar.2022.08.006
Škulj, 2013, Coefficients of ergodicity for Markov chains with uncertain parameters, Metrika, 76, 107, 10.1007/s00184-011-0378-0
Walley, 1991