Application of formal languages in polynomial transformations of instances between NP-complete problems

Journal of Zhejiang University SCIENCE C - Tập 14 - Trang 623-633 - 2013
Jorge A. Ruiz-Vanoye1, Joaquín Pérez-Ortega2, Rodolfo A. Pazos Rangel3, Ocotlán Díaz-Parra1, Héctor J. Fraire-Huacuja3, Juan Frausto-Solís4, Gerardo Reyes-Salgado5, Laura Cruz-Reyes3
1DACI, Universidad Autónoma del Carmen, Cd. del Carmen, Mexico
2Computer Science, Centro Nacional de Investigación y Desarrollo Tecnológico, Cuernavaca, Mexico
3Systems and Computer Science, Instituto Tecnológico de Ciudad Madero, Ciudad Madero, Mexico
4Informatics, Universidad Politécnica del Estado de Morelos, Jiutepec, Mexico
5Computer Science, Instituto Tecnológico de Cuautla, Cuautla, Mexico

Tóm tắt

We propose the usage of formal languages for expressing instances of NP-complete problems for their application in polynomial transformations. The proposed approach, which consists of using formal language theory for polynomial transformations, is more robust, more practical, and faster to apply to real problems than the theory of polynomial transformations. In this paper we propose a methodology for transforming instances between NP-complete problems, which differs from Garey and Johnson’s. Unlike most transformations which are used for proving that a problem is NP-complete based on the NP-completeness of another problem, the proposed approach is intended for extrapolating some known characteristics, phenomena, or behaviors from a problem A to another problem B. This extrapolation could be useful for predicting the performance of an algorithm for solving B based on its known performance for problem A, or for taking an algorithm that solves A and adapting it to solve B.

Tài liệu tham khảo

Aho, A.V., Sethi, R., Ullman, J.D., 1986. Compilers: Principles. Techniques, and Tools. Addison-Wesley, USA, p.14–16. Backus, J.W., 1959. The Syntax and Semantics of the Proposed International Algebraic Language of the Zurich Association for Computing Machinery (ACM) and the Association for Applied Mathematics and Mechanics (GAMM) Conference. Proc. Int. Conf. on Information Processing, p.125–132. Bao, J., Zhou, L.J., Yan, Y., 2012. Analysis on complexity of neural networks using integer weights. Appl. Math. Inf. Sci., 6:317–323. Bennett, J.H., 1962. On Spectra. PhD Thesis, Princeton University, USA. Bennett, C.H., Brassard, G., Jozsa, R., Mayers, D., Peres, A., Schumacher, B., Wootters, W.K., 1994. Reduction of quantum entropy by reversible extraction of classical information. J. Mod. Opt., 41(12):2307–2314. [doi:10.1080/09500349414552161] Brown, J.C., 1960. Loglan. Sci. Am., 202:53–63. [doi:10.1038/scientificamerican0660-53] Cobham, A., 1964. The Intrinsic Computational Difficulty of Functions. Proc. Congress for Logic, Mathematics, and Philosophy of Science, p.24–30. Cook, S.A., 1971. The Complexity of Theorem Proving Procedures. Proc. 3rd ACM Symp. on Theory of Computing, p.151–158. Cook, S.A., 1983. An overview of computational complexity. Commun. ACM, 26(6):400–408. [doi:10.1145/358141.358144] Deutsch, D., 1989. Quantum computational networks. Proc. R. Soc. Lond. A, 425(1868):73–90. [doi:10.1098/rspa.1989.0099] Edmonds, J., 1965. Paths, trees, and flowers. Canad. J. Math., 17:449–467. [doi:10.4153/CJM-1965-045-4] Garey, M.R., Johnson, D.S., 1979. Computers and Intractability: a Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York, p.1–10. Hartmanis, J., Stearns, R.E., 1965. On the computational complexity of algorithms. Trans. Am. Math. Soc., 117(5): 285–306. [doi:10.1090/S0002-9947-1965-0170805-7] Hopcroft, J., Ullman, J., 1969. Formal Languages and Their Relation to Automata. Addison-Wesley, USA, p.1–7. Jonsson, P., Bäckström, C., 1994. Complexity Results for State-Variable Planning under Mixed Syntactical and Structural Restriction. Proc. 6th Int. Conf. on Artificial Intelligence: Methodology, Systems, Applications, p.205–213. Karp, R.M., 1972. Reducibility among Combinatorial Problems. In: Miller, R.E., Thatcher, J.W. (Eds.), Complexity of Computer Computations. Plenum Press, New York, p.85–104. [doi:10.1007/978-1-4684-2001-2_9] Kolmogorov, A.N., 1965. Three approaches to the quantitative definition of information. Prob. Inf. Transm., 1:1–7. Levine, J., 2009. Flex & Bison. O’Reilly Media, USA. Martello, S., Toth, P., 1991. Knapsack Problems: Algorithms and Computer Implementations. John Wiley & Sons, England, p.221–236. Orponen, P., 1990. On the Instance Complexity of NP-Hard Problems. Proc. 5th Annual Structure in Complexity Theory Conf., p.20–27. [doi:10.1109/SCT.1990.113951] Papadimitriou, C., Steiglitz, K., 1982. Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, New Jersey, p.342–357. Papadimitriou, C.H., 1994. Computational Complexity. Addison-Wesley, UK, p.260–265. Rabin, M.O., 1959. Speed of Computation and Classification of Recursive Sets. Third Convention of Scientific Societies, p.1–2. Ruiz-Vanoye, J.A., Díaz-Parra, O., 2011. An overview of the theory of instances computational complexity. Int. J. Combin. Optim. Probl. Inf., 2(2):21–27. Ruiz-Vanoye, J.A., Díaz-Parra, O., Pérez-Ortega, J., Pazos, R.A., Reyes Salgado, G., González-Barbosa, J.J., 2010. Complexity of Instances for Combinatorial Optimization Problems. In: Al-Dahoud, A. (Ed.), Computational Intelligence & Modern Heuristics, Chapter 19. IN-TECH Education and Publishing, p.319–330. [doi:10.5772/7807] Ruiz-Vanoye, J.A., Pérez-Ortega, J., Pazos R.A., Díaz-Parra, O., Frausto-Solís, J., Fraire-Huacuja, H.J., Cruz-Reyes, L., Martínez-Flores, J.A., 2011. Survey of polynomial transformations between NP-complete problems. J. Comput. Appl. Math., 235(16):4851–4865. [doi:10.1016/j.cam.2011.02.018] Shannon, C.E., 1948. The mathematical theory of communication. Bell Syst. Techn. J., 27(3):379–423. [doi:10.1002/j.1538-7305.1948.tb01338.x] Sipser, M., 1983. A Complexity Theoretic Approach to Randomness. Proc. 15th ACM Symp. on Theory of Computing, p.330–335. Solomonoff, R., 1960. A Preliminary Report on a General Theory of Inductive Inference. Report V-131, Zator Co., Cambridge, MA. Solomonoff, R., 1964a. A formal theory of inductive inference. Part I. Inf. Control, 7(1):1–22. [doi:10.1016/S0019-9958(64)90223-2] Solomonoff, R., 1964b. A formal theory of inductive inference. Part II. Inf. Control, 7(2):224–254. [doi:10.1016/S0019-9958(64)90131-7] Stockmeyer, L.J., 1979. Classifying the Computational Complexity of Problems. Research Report RC 7606, Mathematical Sciences Department, IBM Thomas J. Watson Research Center, Yorktown Heights, NY. Traub, J.F., Wasilkowski, G.W., Woźniakowski, H., 1988. Information-Based Complexity. Academic Press, New York. Turing, A.M., 1937. On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc., s2-42(1):230–265. [doi:10.1112/plms/s2-42.1.230] Wozniakowski, H., 1985. Survey of information-based complexity. J. Compl., 1(1):11–44. [doi:10.1016/0885-064X(85)90020-2] Yao, A.C., 1993. Quantum Circuit Complexity. Proc. 34th Annual IEEE Symp. on Foundations of Computer Science, p.352–361.