Application of electrochemical sensor modified by SBA-15 /Fe3O4/polyaniline nanocomposite for determination of tyrosine in milk samples

Sensing and Bio-Sensing Research - Tập 42 - Trang 100602 - 2023
Faeze Khanmohammadi1, BiBi Marziyeh Razavizadeh2, Ebrahim Fooladi2
1Laboratory of Research and Development, Noavaran Elm Sabz, Mashhad, Iran
2Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran

Tài liệu tham khảo

Millward, 2012, Amino acid scoring patterns for protein quality assessment, Br. J. Nutr., 108, S31, 10.1017/S0007114512002462 Fooladi, 2020, Application of carboxylic acid-functionalized of graphene oxide for electrochemical simultaneous determination of tryptophan and tyrosine in milk, SN Appl.Sci., 2, 527, 10.1007/s42452-020-2332-0 Xu, 2005, Electrocatalytic oxidation and direct determination of L-tyrosine by square wave voltammetry at multi-wall carbon nanotubes modified glassy carbon electrodes, Microchim. Acta, 151, 47, 10.1007/s00604-005-0408-6 Delhaye, 1993, Quantitative determination of tryptophan in food and feedstuffs: practical considerations on autoclaving samples for hydrolysis, J. Agric. Food Chem., 41, 1633, 10.1021/jf00034a021 Marcos, 2016, Targeting tryptophan and tyrosine metabolism by liquid chromatography tandem mass spectrometry, J. Chromatogr. A, 1434, 91, 10.1016/j.chroma.2016.01.023 Shroads, 2004, Unified gas chromatographic-mass spectrometric method for quantitating tyrosine metabolites in urine and plasma, J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 808, 153, 10.1016/j.jchromb.2004.05.005 Hasheena, 2023, Electrochemical sensor for detection of dopamine and tyrosine using CdS–C quantum dots modified electrode, J. Appl. Electrochem., 53, 571, 10.1007/s10800-022-01794-8 Jeykumari, 2009, Functionalized carbon nanotube-bienzyme biocomposite for amperometric sensing, Carbon, 47, 957, 10.1016/j.carbon.2008.11.050 Ndamanisha, 2012, Ordered mesoporous carbon for electrochemical sensing: a review, Anal. Chim. Acta, 747, 19, 10.1016/j.aca.2012.08.032 Dumitrescu, 2009, Electrochemistry at carbon nanotubes: perspective and issues, Chem. Commun., 6886, 10.1039/b909734a Zhou, 2008, The characteristics of highly ordered mesoporous carbons as electrode material for electrochemical sensing as compared with carbon nanotubes, Electrochem. Commun., 10, 859, 10.1016/j.elecom.2008.03.008 Wang, 2011, Comparative study on the electrocatalytic activities of ordered mesoporous carbons and graphene, Electrochim. Acta, 56, 3042, 10.1016/j.electacta.2010.12.099 Manjunatha, 2019, Electrochemical polymerised graphene paste electrode and application to catechol sensing, Open Chem. Eng. J., 13, 81, 10.2174/1874123101913010081 Melde, 2010, Mesoporous materials in sensing: morphology and functionality at the meso-interface, Anal. Bioanal. Chem., 398, 1565, 10.1007/s00216-010-3688-6 Nambudumada, 2019, Electrocatalytic analysis of dopamine, uric acid and ascorbic acid at poly(adenine) modified carbon nanotube paste electrode: a cyclic voltammetric study, analytical and bioanalytical, Electrochemistry, 11, 742 Sadeghi, 2015, A new Amperometric biosensor based on Fe3O4/polyaniline/laccase/chitosan biocomposite-modified carbon paste electrode for determination of catechol in tea leaves, Appl. Biochem. Biotechnol., 175, 1603, 10.1007/s12010-014-1380-6 Tigari, 2020, Optimized voltammetric experiment for the determination of phloroglucinol at surfactant modified carbon nanotube paste electrode, Instrum. Exp. Tech., 63, 750, 10.1134/S0020441220050139 Kong, 2018, An electrochemical sensor based on Fe3O4@PANI nanocomposites for sensitive detection of Pb2+ and Cd2+, Anal. Methods, 10, 4784, 10.1039/C8AY01245H Ladmakhi, 2020, Electrochemical sensor based on magnetite graphene oxide/ordered mesoporous carbon hybrid to detection of allopurinol in clinical samples, Talanta, 211, 10.1016/j.talanta.2020.120759 Khanmohammadi, 2020, SBA-15 with short channels for laccase immobilization, Microporous Mesoporous Mater., 309, 10.1016/j.micromeso.2020.110527 Innocenzi, 2003, Infrared spectroscopy of sol–gel derived silica-based films: a spectra-microstructure overview, J. Non-Cryst. Solids, 316, 309, 10.1016/S0022-3093(02)01637-X Kirk, 1988, Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica, Phys. Rev. B, 38, 1255, 10.1103/PhysRevB.38.1255 Wang, 1999, Comparison between the polarized Fourier-transform infrared spectra of aged porous silicon and amorphous silicon dioxide films on Si (100) surface, J. Mol. Struct., 508, 87, 10.1016/S0022-2860(99)00003-4 Primeau, 1997, The effect of thermal annealing on aerosol-gel deposited SiO2 films: a FTIR deconvolution study, Thin Solid Films, 310, 47, 10.1016/S0040-6090(97)00340-4 Coudurier, 1982, Uses of i.r. spectroscopy in identifying ZSM zeolite structure, J. Chem. Soc. Chem. Commun., 1413, 10.1039/c39820001413 Hareesha, 2021, Electrochemical analysis of indigo carmine in food and water samples using a poly(glutamic acid) layered multi-walled carbon nanotube paste electrode, J. Electron. Mater., 50, 1230, 10.1007/s11664-020-08616-7 Manjunatha, 2009, Electrocatalytic response of dopamine at mannitol and Triton X-100 modified carbon paste electrode: a cyclic voltammetric study, Int. J. Electrochem. Sci., 4 Wagner, 1983, Age changes of isoelectric points of the molecular forms of tyrosine aminotransferase from rat liver, Gerontology, 29, 299, 10.1159/000213130 Balliamada Monnappa, 2019, Electrochemical sensor for the determination of alizarin red-S at non-ionic surfactant modified carbon nanotube paste electrode, Phys. Chem. Res., 7, 523 Revin, 2012, Highly sensitive determination of uric acid in the presence of major interferents using a conducting polymer film modified electrode, Bioelectrochemistry, 88, 22, 10.1016/j.bioelechem.2012.05.005 Ghoreishi, 2012, Electrochemical determination of tyrosine in the presence of dopamine and uric acid at the surface of gold nanoparticles modified carbon paste electrode, J. Chin. Chem. Soc., 59, 1015, 10.1002/jccs.201100654 Babaei, 2009, A sensitive simultaneous determination of epinephrine and tyrosine using an iron(III) doped zeolite-modified carbon paste electrode, J. Braz. Chem. Soc., 20, 10.1590/S0103-50532009001000014