Application of electrical capacitance tomography in particulate process measurement – A review

Advanced Powder Technology - Tập 25 Số 1 - Trang 174-188 - 2014
Wenbiao Zhang1,2, Chao Wang2, Wuqiang Yang3, Chi‐Hwa Wang4
1Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
2School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
3School of Electrical and Electronic Engineering, The University of Manchester, Sackville Street, Manchester M13 9Pl, UK
4Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Eng. Drive 4, Singapore 117576, Singapore

Tóm tắt

Từ khóa


Tài liệu tham khảo

Huang, 1992, Design of sensor electronics for electrical capacitance tomography, IEE Proc. G, 139, 82

Xie, 1992, Electrical capacitance tomography for flow imaging-system model for development of image reconstruction algorithms and design of primary sensors, IEE Proc. G, 139, 89

Huang, 1989, Tomographic imaging of two-component flow using capacitance sensors, J. Phys. E: Sci. Instrum., 22, 173, 10.1088/0022-3735/22/3/009

Yang, 1996, Hardware design of electrical capacitance tomography systems, Meas. Sci. Technol., 7, 225, 10.1088/0957-0233/7/3/003

Dyakowski, 1997, Application of capacitance tomography to gas–solid flows, Chem. Eng. Sci., 52, 2099, 10.1016/S0009-2509(97)00037-7

Beck, 1997, Principles and industrial applications of electrical capacitance tomography, Meas. Control, 30, 197, 10.1177/002029409703000702

Yang, 2000, Role of tomography in gas solids flow measurement, Flow Meas. Instrum., 11, 237, 10.1016/S0955-5986(00)00023-6

Dyakowski, 2000, Applications of electrical tomography for gas–solids and liquid–solids flows – a review, Powder Technol., 112, 174, 10.1016/S0032-5910(00)00292-8

Williams, 2003, Tomographic imaging of particulate systems, Adv. Powder Technol., 14, 1, 10.1163/156855203762469867

Yang, 2003, Image reconstruction algorithms for electrical capacitance tomography, Meas. Sci. Technol., 14, R1, 10.1088/0957-0233/14/1/201

Yang, 2010, Design of electrical capacitance tomography sensors, Meas. Sci. Technol., 21, 042001, 10.1088/0957-0233/21/4/042001

Williams, 2010, Landmarks in the application of electrical tomography in particle science and technology, Particuology, 8, 493, 10.1016/j.partic.2010.07.017

Rao, 2001, Electrical capacitance tomography measurements on the pneumatic conveying of solids, Ind. Eng. Chem. Res., 40, 4216, 10.1021/ie0100028

Zhu, 2003, Electrical capacitance tomography measurements on vertical and inclined pneumatic conveying of granular solids, Chem. Eng. Sci., 58, 4225, 10.1016/S0009-2509(03)00306-3

Zhu, 2004, On the electrostatics of pneumatic conveying of granular materials using electrical capacitance tomography, Chem. Eng. Sci., 59, 3201, 10.1016/j.ces.2004.04.019

Zhang, 2007, Pneumatic transport of granular materials in an inclined conveying pipe: comparison of computational fluid dynamics–discrete element method (CFD–DEM) electrical capacitance tomography (ECT) and particle image velocimetry (PIV) results, Ind. Eng. Chem. Res., 46, 6066, 10.1021/ie061304i

Zhang, 2008, Hazard of electrostatic generation in a pneumatic conveying system: electrostatic effects on the accuracy of electrical capacitance tomography measurements and generation of spark, Meas. Sci. Technol., 19, 015502, 10.1088/0957-0233/19/1/015502

Dyakowski, 1999, On-line monitoring of dense phase flow using real time dielectric imaging, Powder Technol., 104, 287, 10.1016/S0032-5910(99)00106-0

Jaworski, 2001, Application of electrical capacitance tomography for measurement of gas–solids flow characteristics in a pneumatic conveying system, Meas. Sci. Technol., 12, 1109, 10.1088/0957-0233/12/8/317

Jaworski, 2002, Investigations of flow instabilities within the dense pneumatic conveying system, Powder Technol., 125, 279, 10.1016/S0032-5910(01)00516-2

Ostrowski, 1999, Real time visualisation and analysis of dense phase powder conveying, Powder Technol., 102, 1, 10.1016/S0032-5910(98)00201-0

Ostrowski, 2000, Application of capacitance electrical tomography for on-line and off-line analysis of flow pattern in horizontal pipeline of pneumatic conveyer, Chem. Eng. J., 77, 43, 10.1016/S1385-8947(99)00140-0

Romanowski, 2006, Advanced statistical analysis as a novel tool to pneumatic conveying monitoring and control strategy development, Part. Part. Syst. Char., 23, 289, 10.1002/ppsc.200601059

Datta, 2007, Estimation of particulate velocity components in pneumatic transport using pixel based correlation with dual plane ECT, Chem. Eng. J., 130, 87, 10.1016/j.cej.2006.08.034

Xue, 2012, Dynamical lag correlation exponent based method for gas-solid flow velocity measurement using twin-plane electrical capacitance tomography, Meas. Sci. Technol., 23, 085301, 10.1088/0957-0233/23/8/085301

Sun, 2008, Mass flow measurement of pneumatically conveyed solids using electrical capacitance tomography, Meas. Sci. Technol., 19, 045503, 10.1088/0957-0233/19/4/045503

Azzopardi, 2008, Fluctuations in dense phase pneumatic conveying of pulverised coal measured using electrical capacitance tomography, Chem. Eng. Sci., 63, 2548, 10.1016/j.ces.2008.02.013

Mosorov, 2008, Flow pattern tracing for mass flow rate measurement in pneumatic conveying using twin plane electrical capacitance tomography, Part. Part. Syst. Char., 25, 259, 10.1002/ppsc.200700034

Yang, 2011, Dense-phase pneumatic conveying under pressure in horizontal pipeline, Particuology, 9, 432, 10.1016/j.partic.2011.03.008

Yang, 2011, Thick-wall electrical capacitance tomography and its application in dense-phase pneumatic conveying under high pressure, IET Image Process., 5, 513, 10.1049/iet-ipr.2009.0209

Cong, 2011, Experimental research of flow patterns and pressure signals in horizontal dense phase pneumatic conveying of pulverized coal, Powder Technol., 208, 600, 10.1016/j.powtec.2010.12.027

Cong, 2012, Flow pattern characteristics in vertical dense-phase pneumatic conveying of pulverized coal using electrical capacitance tomography, Ind. Eng. Chem. Res., 51, 15268, 10.1021/ie3011897

Hua, 1999, Electrical capacitance tomography measurements of gravity-driven granular flows, Ind. Eng. Chem. Res., 38, 621, 10.1021/ie980375h

Chaniecki, 2006, Application of electrical capacitance tomography for bulk solids flow analysis in silos, Part. Part. Syst. Char., 23, 306, 10.1002/ppsc.200601061

Niedostatkiewicz, 2007, Investigations of porosity changes during granular silo flow using electrical capacitance tomography (ECT) and particle image velocimetry (PIV), Part. Part. Syst. Char., 24, 304, 10.1002/ppsc.200601133

Grudzien, 2008, Gravitational granular flow dynamics study based on tomographic data processing, Particul. Sci. Technol., 26, 67, 10.1080/02726350701759373

Niedostatkiewicz, 2009, Determination of bulk solid concentration changes during granular flow in a model silo with ECT sensors, Chem. Eng. Sci., 64, 20, 10.1016/j.ces.2008.08.035

Niedostatkiewicz, 2010, Application of ECT to solid concentration measurements during granular flow in a rectangular model silo, Chem. Eng. Res. Des., 88, 1037, 10.1016/j.cherd.2010.01.034

Grudzien, 2010, Description of the silo flow and bulk solid pulsation detection using ECT, Flow Meas. Instrum., 21, 198, 10.1016/j.flowmeasinst.2009.12.006

Grudzien, 2012, ECT image analysis methods for shear zone measurements during silo discharging process, Chin. J. Chem. Eng., 20, 337, 10.1016/S1004-9541(12)60396-6

Grudzien, 2012, Analysis of the bulk solid flow during gravitational silo emptying using X-ray and ECT tomography, Powder Technol., 224, 196, 10.1016/j.powtec.2012.02.054

Liu, 2001, Investigation of square fluidized beds using capacitance tomography: preliminary results, Meas. Sci. Technol., 12, 1120, 10.1088/0957-0233/12/8/318

Liu, 2002, A new image reconstruction method for tomographic investigation of fluidized beds, AIChE J., 48, 1631, 10.1002/aic.690480806

Liu, 2005, Electrical capacitance tomography for gas–solids flow measurement for circulating fluidized beds, Flow Meas. Instrum., 16, 135, 10.1016/j.flowmeasinst.2005.02.013

Wang, 2006, Study of bubbling and slugging fluidized beds by simulation and ECT, AIChE J., 52, 3078, 10.1002/aic.10904

Malcus, 2000, The hydrodynamics of the high-density bottom zone in a CFB riser analyzed by means of electrical capacitance tomography (ECT), Chem. Eng. Sci., 55, 4129, 10.1016/S0009-2509(00)00083-X

White, 2002, Using electrical capacitance tomography to monitor gas voids in a packed bed of solids, Meas. Sci. Technol., 13, 1842, 10.1088/0957-0233/13/12/306

Makkawi, 2002, Fluidization regimes in a conventional fluidized bed characterized by means of electrical capacitance tomography, Chem. Eng. Sci., 57, 2411, 10.1016/S0009-2509(02)00138-0

Pugsley, 2003, Verification of fluidized bed electrical capacitance tomography measurements with a fibre optic probe, Chem. Eng. Sci., 58, 3923, 10.1016/S0009-2509(03)00288-4

Makkawi, 2004, Electrical capacitance tomography for conventional fluidized bed measurements-remarks on the measuring technique, Powder Technol., 148, 142, 10.1016/j.powtec.2004.09.006

Wang, 2008, Experimental study on gas–solids flows in a circulating fluidised bed using electrical capacitance tomography, Powder Technol., 185, 144, 10.1016/j.powtec.2007.10.007

Zhao, 2010, Three-dimensional simulation of the particle distribution in a downer using CFD–DEM and comparison with the results of ECT experiments, Adv. Powder Technol., 21, 630, 10.1016/j.apt.2010.06.009

Zhao, 2010, Discussion of the solids distribution behavior in a downer with new designed distributor based on concentration images obtained by electrical capacitance tomography, Powder Technol., 198, 120, 10.1016/j.powtec.2009.10.024

Zhao, 2010, ECT measurement and CFD–DEM simulation of particle distribution in a down-flow fluidized bed, Flow Meas. Instrum., 21, 212, 10.1016/j.flowmeasinst.2009.12.008

Zhao, 2011, Wavelet analysis of the particle distribution in a down-flow fluidized bed based on electrical capacitance tomography images, Powder Technol., 211, 264, 10.1016/j.powtec.2011.04.034

Du, 2002, Gas and solids mixing in a turbulent fluidized bed, AIChE J., 48, 1896, 10.1002/aic.690480907

Du, 2003, Bed nonhomogeneity in turbulent gas-solid fluidization, AIChE J., 49, 1109, 10.1002/aic.690490506

Du, 2004, ECT studies of the choking phenomenon in a gas–solid circulating fluidized bed, AIChE J., 50, 1386, 10.1002/aic.10168

Du, 2004, Characteristics of choking behavior in circulating fluidized beds for group B particles, Ind. Eng. Chem. Res., 43, 5507, 10.1021/ie0499613

Du, 2005, ECT studies of gas–solid fluidized beds of different diameters, Ind. Eng. Chem. Res., 44, 5020, 10.1021/ie049025n

Du, 2006, Behavior of the dense-phase transportation regime in a circulating fluidized bed, Ind. Eng. Chem. Res., 45, 3741, 10.1021/ie0513548

Du, 2006, Imaging the choking transition in gas–solid risers using electrical capacitance tomography, Ind. Eng. Chem. Res., 45, 5384, 10.1021/ie051401w

Warsito, 2007, Electrical capacitance volume tomography, IEEE Sens. J., 7, 525, 10.1109/JSEN.2007.891952

Marashdeh, 2008, Electrical capacitance tomography – a perspective, Ind. Eng. Chem. Res., 47, 3708, 10.1021/ie0713590

You, 2008, Heterogeneous structure in gas–solid riser flows, AIChE J., 54, 1459, 10.1002/aic.11488

Holland, 2009, Comparison of ECVT and MR measurements of voidage in a gas-fluidized bed, Ind. Eng. Chem. Res., 48, 172, 10.1021/ie8002073

Wang, 2010, Horizontal gas and gas/solid jet penetration in a gas–solid fluidized bed, Chem. Eng. Sci., 65, 3394, 10.1016/j.ces.2010.02.036

Wang, 2010, Electrical capacitance volume tomography: design and applications, Sensors, 10, 1890, 10.3390/s100301890

Wang, 2012, Electrical capacitance volume tomography imaging of three-dimensional flow structures and solids concentration distributions in a riser and a bend of a gas–solid circulating fluidized bed, Ind. Eng. Chem. Res., 51, 10968, 10.1021/ie300746q

Chaplin, 2005, The dynamic calibration of an electrical capacitance tomography sensor applied to the fluidized bed drying of pharmaceutical granule, Meas. Sci. Technol., 16, 1281, 10.1088/0957-0233/16/6/007

Chaplin, 2005, Application of electrical capacitance tomography to the fluidized bed drying of pharmaceutical granule, Chem. Eng. Sci., 60, 7022, 10.1016/j.ces.2005.06.029

Wang, 2008, Investigation of batch fluidized-bed drying by mathematical modeling, CFD simulation and ECT measurement, AIChE J., 54, 427, 10.1002/aic.11406

Wang, 2009, Online measurement and control of solids moisture in fluidised bed dryers, Chem. Eng. Sci., 64, 2893, 10.1016/j.ces.2009.03.014

Wang, 2010, Measurement of fluidised bed dryer by different frequency and different normalisation methods with electrical capacitance tomography, Powder Technol., 199, 60, 10.1016/j.powtec.2009.04.019

Wang, 2011, Scale-up of an electrical capacitance tomography sensor for imaging pharmaceutical fluidized beds and validation by computational fluid dynamics, Meas. Sci. Technol., 22, 104015, 10.1088/0957-0233/22/10/104015

Rabinovich, 2011, Flow regime diagram for vertical pneumatic conveying and fluidized bed systems, Powder Technol., 207, 119, 10.1016/j.powtec.2010.10.017

Wajman, 2006, Spatial imaging with 3D capacitance measurements, Meas. Sci. Technol., 17, 2113, 10.1088/0957-0233/17/8/009

Warsito, 2001, Neural network based multi-criterion optimization image reconstruction technique for imaging two- and three-phase flow systems using electrical capacitance tomography, Meas. Sci. Technol., 12, 2198, 10.1088/0957-0233/12/12/323

Warsito, 2003, Neural network multi-criteria optimization image reconstruction technique (NN-MOIRT) for linear and non-linear process tomography, Chem. Eng. Process., 42, 663, 10.1016/S0255-2701(02)00204-0

Mosorov, 2002, The ‘best-correlated pixels’ method for solid mass flow measurements using electrical capacitance tomography, Meas. Sci. Technol., 13, 1810, 10.1088/0957-0233/13/12/302

Mosorov, 2006, A method of transit time measurement using twin-plane electrical tomography, Meas. Sci. Technol., 17, 753, 10.1088/0957-0233/17/4/022

Matsusaka, 2003, Electrostatics of particles, Adv. Powder Technol., 14, 143, 10.1163/156855203763593958

Matsusaka, 2010, Triboelectric charging of powders: a review, Chem. Eng. Sci., 65, 5781, 10.1016/j.ces.2010.07.005

Yao, 2004, Electrostatics of the granular flow in a pneumatic conveying system, Ind. Eng. Chem. Res., 43, 7181, 10.1021/ie049661l

Yao, 2006, Granular size and shape effect on electrostatics in pneumatic conveying systems, Chem. Eng. Sci., 61, 3858, 10.1016/j.ces.2006.01.015

Yao, 2006, On the electrostatic equilibrium of granular flow in pneumatic conveying systems, AIChE J., 52, 3775, 10.1002/aic.10991

Lim, 2006, Effects of an electrostatic field in pneumatic conveying of granular materials through inclined and vertical pipes, Chem. Eng. Sci., 61, 7889, 10.1016/j.ces.2006.07.045

Gao, 2012, Effects of particle charging on electrical capacitance tomography system, Measurement, 45, 375, 10.1016/j.measurement.2011.11.007

Rezvanpour, 2012, Investigation of droplet distribution in electrohydrodynamic atomization (EHDA) using an ac-based electrical capacitance tomography (ECT) system with an internal–external electrode sensor, Meas. Sci. Technol., 23, 015301, 10.1088/0957-0233/23/1/015301