Application of electrical capacitance tomography in particulate process measurement – A review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Huang, 1992, Design of sensor electronics for electrical capacitance tomography, IEE Proc. G, 139, 82
Xie, 1992, Electrical capacitance tomography for flow imaging-system model for development of image reconstruction algorithms and design of primary sensors, IEE Proc. G, 139, 89
Huang, 1989, Tomographic imaging of two-component flow using capacitance sensors, J. Phys. E: Sci. Instrum., 22, 173, 10.1088/0022-3735/22/3/009
Yang, 1996, Hardware design of electrical capacitance tomography systems, Meas. Sci. Technol., 7, 225, 10.1088/0957-0233/7/3/003
Dyakowski, 1997, Application of capacitance tomography to gas–solid flows, Chem. Eng. Sci., 52, 2099, 10.1016/S0009-2509(97)00037-7
Beck, 1997, Principles and industrial applications of electrical capacitance tomography, Meas. Control, 30, 197, 10.1177/002029409703000702
Yang, 2000, Role of tomography in gas solids flow measurement, Flow Meas. Instrum., 11, 237, 10.1016/S0955-5986(00)00023-6
Dyakowski, 2000, Applications of electrical tomography for gas–solids and liquid–solids flows – a review, Powder Technol., 112, 174, 10.1016/S0032-5910(00)00292-8
Williams, 2003, Tomographic imaging of particulate systems, Adv. Powder Technol., 14, 1, 10.1163/156855203762469867
Yang, 2003, Image reconstruction algorithms for electrical capacitance tomography, Meas. Sci. Technol., 14, R1, 10.1088/0957-0233/14/1/201
Yang, 2010, Design of electrical capacitance tomography sensors, Meas. Sci. Technol., 21, 042001, 10.1088/0957-0233/21/4/042001
Williams, 2010, Landmarks in the application of electrical tomography in particle science and technology, Particuology, 8, 493, 10.1016/j.partic.2010.07.017
Rao, 2001, Electrical capacitance tomography measurements on the pneumatic conveying of solids, Ind. Eng. Chem. Res., 40, 4216, 10.1021/ie0100028
Zhu, 2003, Electrical capacitance tomography measurements on vertical and inclined pneumatic conveying of granular solids, Chem. Eng. Sci., 58, 4225, 10.1016/S0009-2509(03)00306-3
Zhu, 2004, On the electrostatics of pneumatic conveying of granular materials using electrical capacitance tomography, Chem. Eng. Sci., 59, 3201, 10.1016/j.ces.2004.04.019
Zhang, 2007, Pneumatic transport of granular materials in an inclined conveying pipe: comparison of computational fluid dynamics–discrete element method (CFD–DEM) electrical capacitance tomography (ECT) and particle image velocimetry (PIV) results, Ind. Eng. Chem. Res., 46, 6066, 10.1021/ie061304i
Zhang, 2008, Hazard of electrostatic generation in a pneumatic conveying system: electrostatic effects on the accuracy of electrical capacitance tomography measurements and generation of spark, Meas. Sci. Technol., 19, 015502, 10.1088/0957-0233/19/1/015502
Dyakowski, 1999, On-line monitoring of dense phase flow using real time dielectric imaging, Powder Technol., 104, 287, 10.1016/S0032-5910(99)00106-0
Jaworski, 2001, Application of electrical capacitance tomography for measurement of gas–solids flow characteristics in a pneumatic conveying system, Meas. Sci. Technol., 12, 1109, 10.1088/0957-0233/12/8/317
Jaworski, 2002, Investigations of flow instabilities within the dense pneumatic conveying system, Powder Technol., 125, 279, 10.1016/S0032-5910(01)00516-2
Ostrowski, 1999, Real time visualisation and analysis of dense phase powder conveying, Powder Technol., 102, 1, 10.1016/S0032-5910(98)00201-0
Ostrowski, 2000, Application of capacitance electrical tomography for on-line and off-line analysis of flow pattern in horizontal pipeline of pneumatic conveyer, Chem. Eng. J., 77, 43, 10.1016/S1385-8947(99)00140-0
Romanowski, 2006, Advanced statistical analysis as a novel tool to pneumatic conveying monitoring and control strategy development, Part. Part. Syst. Char., 23, 289, 10.1002/ppsc.200601059
Datta, 2007, Estimation of particulate velocity components in pneumatic transport using pixel based correlation with dual plane ECT, Chem. Eng. J., 130, 87, 10.1016/j.cej.2006.08.034
Xue, 2012, Dynamical lag correlation exponent based method for gas-solid flow velocity measurement using twin-plane electrical capacitance tomography, Meas. Sci. Technol., 23, 085301, 10.1088/0957-0233/23/8/085301
Sun, 2008, Mass flow measurement of pneumatically conveyed solids using electrical capacitance tomography, Meas. Sci. Technol., 19, 045503, 10.1088/0957-0233/19/4/045503
Azzopardi, 2008, Fluctuations in dense phase pneumatic conveying of pulverised coal measured using electrical capacitance tomography, Chem. Eng. Sci., 63, 2548, 10.1016/j.ces.2008.02.013
Mosorov, 2008, Flow pattern tracing for mass flow rate measurement in pneumatic conveying using twin plane electrical capacitance tomography, Part. Part. Syst. Char., 25, 259, 10.1002/ppsc.200700034
Yang, 2011, Dense-phase pneumatic conveying under pressure in horizontal pipeline, Particuology, 9, 432, 10.1016/j.partic.2011.03.008
Yang, 2011, Thick-wall electrical capacitance tomography and its application in dense-phase pneumatic conveying under high pressure, IET Image Process., 5, 513, 10.1049/iet-ipr.2009.0209
Cong, 2011, Experimental research of flow patterns and pressure signals in horizontal dense phase pneumatic conveying of pulverized coal, Powder Technol., 208, 600, 10.1016/j.powtec.2010.12.027
Cong, 2012, Flow pattern characteristics in vertical dense-phase pneumatic conveying of pulverized coal using electrical capacitance tomography, Ind. Eng. Chem. Res., 51, 15268, 10.1021/ie3011897
Hua, 1999, Electrical capacitance tomography measurements of gravity-driven granular flows, Ind. Eng. Chem. Res., 38, 621, 10.1021/ie980375h
Chaniecki, 2006, Application of electrical capacitance tomography for bulk solids flow analysis in silos, Part. Part. Syst. Char., 23, 306, 10.1002/ppsc.200601061
Niedostatkiewicz, 2007, Investigations of porosity changes during granular silo flow using electrical capacitance tomography (ECT) and particle image velocimetry (PIV), Part. Part. Syst. Char., 24, 304, 10.1002/ppsc.200601133
Grudzien, 2008, Gravitational granular flow dynamics study based on tomographic data processing, Particul. Sci. Technol., 26, 67, 10.1080/02726350701759373
Niedostatkiewicz, 2009, Determination of bulk solid concentration changes during granular flow in a model silo with ECT sensors, Chem. Eng. Sci., 64, 20, 10.1016/j.ces.2008.08.035
Niedostatkiewicz, 2010, Application of ECT to solid concentration measurements during granular flow in a rectangular model silo, Chem. Eng. Res. Des., 88, 1037, 10.1016/j.cherd.2010.01.034
Grudzien, 2010, Description of the silo flow and bulk solid pulsation detection using ECT, Flow Meas. Instrum., 21, 198, 10.1016/j.flowmeasinst.2009.12.006
Grudzien, 2012, ECT image analysis methods for shear zone measurements during silo discharging process, Chin. J. Chem. Eng., 20, 337, 10.1016/S1004-9541(12)60396-6
Grudzien, 2012, Analysis of the bulk solid flow during gravitational silo emptying using X-ray and ECT tomography, Powder Technol., 224, 196, 10.1016/j.powtec.2012.02.054
Liu, 2001, Investigation of square fluidized beds using capacitance tomography: preliminary results, Meas. Sci. Technol., 12, 1120, 10.1088/0957-0233/12/8/318
Liu, 2002, A new image reconstruction method for tomographic investigation of fluidized beds, AIChE J., 48, 1631, 10.1002/aic.690480806
Liu, 2005, Electrical capacitance tomography for gas–solids flow measurement for circulating fluidized beds, Flow Meas. Instrum., 16, 135, 10.1016/j.flowmeasinst.2005.02.013
Wang, 2006, Study of bubbling and slugging fluidized beds by simulation and ECT, AIChE J., 52, 3078, 10.1002/aic.10904
Malcus, 2000, The hydrodynamics of the high-density bottom zone in a CFB riser analyzed by means of electrical capacitance tomography (ECT), Chem. Eng. Sci., 55, 4129, 10.1016/S0009-2509(00)00083-X
White, 2002, Using electrical capacitance tomography to monitor gas voids in a packed bed of solids, Meas. Sci. Technol., 13, 1842, 10.1088/0957-0233/13/12/306
Makkawi, 2002, Fluidization regimes in a conventional fluidized bed characterized by means of electrical capacitance tomography, Chem. Eng. Sci., 57, 2411, 10.1016/S0009-2509(02)00138-0
Pugsley, 2003, Verification of fluidized bed electrical capacitance tomography measurements with a fibre optic probe, Chem. Eng. Sci., 58, 3923, 10.1016/S0009-2509(03)00288-4
Makkawi, 2004, Electrical capacitance tomography for conventional fluidized bed measurements-remarks on the measuring technique, Powder Technol., 148, 142, 10.1016/j.powtec.2004.09.006
Wang, 2008, Experimental study on gas–solids flows in a circulating fluidised bed using electrical capacitance tomography, Powder Technol., 185, 144, 10.1016/j.powtec.2007.10.007
Zhao, 2010, Three-dimensional simulation of the particle distribution in a downer using CFD–DEM and comparison with the results of ECT experiments, Adv. Powder Technol., 21, 630, 10.1016/j.apt.2010.06.009
Zhao, 2010, Discussion of the solids distribution behavior in a downer with new designed distributor based on concentration images obtained by electrical capacitance tomography, Powder Technol., 198, 120, 10.1016/j.powtec.2009.10.024
Zhao, 2010, ECT measurement and CFD–DEM simulation of particle distribution in a down-flow fluidized bed, Flow Meas. Instrum., 21, 212, 10.1016/j.flowmeasinst.2009.12.008
Zhao, 2011, Wavelet analysis of the particle distribution in a down-flow fluidized bed based on electrical capacitance tomography images, Powder Technol., 211, 264, 10.1016/j.powtec.2011.04.034
Du, 2002, Gas and solids mixing in a turbulent fluidized bed, AIChE J., 48, 1896, 10.1002/aic.690480907
Du, 2003, Bed nonhomogeneity in turbulent gas-solid fluidization, AIChE J., 49, 1109, 10.1002/aic.690490506
Du, 2004, ECT studies of the choking phenomenon in a gas–solid circulating fluidized bed, AIChE J., 50, 1386, 10.1002/aic.10168
Du, 2004, Characteristics of choking behavior in circulating fluidized beds for group B particles, Ind. Eng. Chem. Res., 43, 5507, 10.1021/ie0499613
Du, 2005, ECT studies of gas–solid fluidized beds of different diameters, Ind. Eng. Chem. Res., 44, 5020, 10.1021/ie049025n
Du, 2006, Behavior of the dense-phase transportation regime in a circulating fluidized bed, Ind. Eng. Chem. Res., 45, 3741, 10.1021/ie0513548
Du, 2006, Imaging the choking transition in gas–solid risers using electrical capacitance tomography, Ind. Eng. Chem. Res., 45, 5384, 10.1021/ie051401w
Warsito, 2007, Electrical capacitance volume tomography, IEEE Sens. J., 7, 525, 10.1109/JSEN.2007.891952
Marashdeh, 2008, Electrical capacitance tomography – a perspective, Ind. Eng. Chem. Res., 47, 3708, 10.1021/ie0713590
Holland, 2009, Comparison of ECVT and MR measurements of voidage in a gas-fluidized bed, Ind. Eng. Chem. Res., 48, 172, 10.1021/ie8002073
Wang, 2010, Horizontal gas and gas/solid jet penetration in a gas–solid fluidized bed, Chem. Eng. Sci., 65, 3394, 10.1016/j.ces.2010.02.036
Wang, 2010, Electrical capacitance volume tomography: design and applications, Sensors, 10, 1890, 10.3390/s100301890
Wang, 2012, Electrical capacitance volume tomography imaging of three-dimensional flow structures and solids concentration distributions in a riser and a bend of a gas–solid circulating fluidized bed, Ind. Eng. Chem. Res., 51, 10968, 10.1021/ie300746q
Chaplin, 2005, The dynamic calibration of an electrical capacitance tomography sensor applied to the fluidized bed drying of pharmaceutical granule, Meas. Sci. Technol., 16, 1281, 10.1088/0957-0233/16/6/007
Chaplin, 2005, Application of electrical capacitance tomography to the fluidized bed drying of pharmaceutical granule, Chem. Eng. Sci., 60, 7022, 10.1016/j.ces.2005.06.029
Wang, 2008, Investigation of batch fluidized-bed drying by mathematical modeling, CFD simulation and ECT measurement, AIChE J., 54, 427, 10.1002/aic.11406
Wang, 2009, Online measurement and control of solids moisture in fluidised bed dryers, Chem. Eng. Sci., 64, 2893, 10.1016/j.ces.2009.03.014
Wang, 2010, Measurement of fluidised bed dryer by different frequency and different normalisation methods with electrical capacitance tomography, Powder Technol., 199, 60, 10.1016/j.powtec.2009.04.019
Wang, 2011, Scale-up of an electrical capacitance tomography sensor for imaging pharmaceutical fluidized beds and validation by computational fluid dynamics, Meas. Sci. Technol., 22, 104015, 10.1088/0957-0233/22/10/104015
Rabinovich, 2011, Flow regime diagram for vertical pneumatic conveying and fluidized bed systems, Powder Technol., 207, 119, 10.1016/j.powtec.2010.10.017
Wajman, 2006, Spatial imaging with 3D capacitance measurements, Meas. Sci. Technol., 17, 2113, 10.1088/0957-0233/17/8/009
Warsito, 2001, Neural network based multi-criterion optimization image reconstruction technique for imaging two- and three-phase flow systems using electrical capacitance tomography, Meas. Sci. Technol., 12, 2198, 10.1088/0957-0233/12/12/323
Warsito, 2003, Neural network multi-criteria optimization image reconstruction technique (NN-MOIRT) for linear and non-linear process tomography, Chem. Eng. Process., 42, 663, 10.1016/S0255-2701(02)00204-0
Mosorov, 2002, The ‘best-correlated pixels’ method for solid mass flow measurements using electrical capacitance tomography, Meas. Sci. Technol., 13, 1810, 10.1088/0957-0233/13/12/302
Mosorov, 2006, A method of transit time measurement using twin-plane electrical tomography, Meas. Sci. Technol., 17, 753, 10.1088/0957-0233/17/4/022
Matsusaka, 2003, Electrostatics of particles, Adv. Powder Technol., 14, 143, 10.1163/156855203763593958
Matsusaka, 2010, Triboelectric charging of powders: a review, Chem. Eng. Sci., 65, 5781, 10.1016/j.ces.2010.07.005
Yao, 2004, Electrostatics of the granular flow in a pneumatic conveying system, Ind. Eng. Chem. Res., 43, 7181, 10.1021/ie049661l
Yao, 2006, Granular size and shape effect on electrostatics in pneumatic conveying systems, Chem. Eng. Sci., 61, 3858, 10.1016/j.ces.2006.01.015
Yao, 2006, On the electrostatic equilibrium of granular flow in pneumatic conveying systems, AIChE J., 52, 3775, 10.1002/aic.10991
Lim, 2006, Effects of an electrostatic field in pneumatic conveying of granular materials through inclined and vertical pipes, Chem. Eng. Sci., 61, 7889, 10.1016/j.ces.2006.07.045
Gao, 2012, Effects of particle charging on electrical capacitance tomography system, Measurement, 45, 375, 10.1016/j.measurement.2011.11.007