Application of eco-friendly alternative activators in alkali-activated materials: A review

Journal of Building Engineering - Tập 35 - Trang 102010 - 2021
Beatryz Cardoso Mendes1, Leonardo Gonçalves Pedroti1, Carlos Maurício Fontes Vieira2, Markssuel Teixeira Marvila2, Afonso Rangel Garcez de Azevedo2, José Maria Franco de Carvalho1, José Carlos Lopes Ribeiro1
1UFV - Federal University of Viçosa, DEC – Civil Engineering Department, Av. Peter Rolfs, s/n, Campus Universitário, 36570-000, Viçosa, Brazil
2UENF - State University of the Northern Rio de Janeiro, LAMAV – Advanced Materials Laboratory, Av. Alberto Lamego, 2000, 28013-602, Campos dos Goytacazes, Brazil

Tóm tắt

Từ khóa


Tài liệu tham khảo

Liu, 2019, An overview on the reuse of waste glasses in alkali-activated materials, Resour. Conserv. Recycl., 144, 297, 10.1016/j.resconrec.2019.02.007

Provis, 2014, Geopolymers and other alkali activated materials: why, how, and what?, Mater. Struct. Constr., 47, 11, 10.1617/s11527-013-0211-5

Shi, 2011, New cements for the 21st century: the pursuit of an alternative to Portland cement, Cement Concr. Res., 41, 750, 10.1016/j.cemconres.2011.03.016

Kua, 2019, Environmental and economic viability of Alkali Activated Material (AAM) comprising slag, fly ash and spent coffee ground, Int. J. Sustain. Eng., 12, 223, 10.1080/19397038.2018.1492043

Zhuang, 2016, Fly ash-based geopolymer: clean production, properties and applications, J. Clean. Prod., 125, 253, 10.1016/j.jclepro.2016.03.019

Heah, 2012, Study on solids-to-liquid and alkaline activator ratios on kaolin-based geopolymers, Construct. Build. Mater., 35, 912, 10.1016/j.conbuildmat.2012.04.102

Gavali, 2019, Development of sustainable alkali-activated bricks using industrial wastes, Construct. Build. Mater., 215, 180, 10.1016/j.conbuildmat.2019.04.152

Samarakoon, 2019, Recent advances in alkaline cement binders: a review, J. Clean. Prod., 227, 70, 10.1016/j.jclepro.2019.04.103

Palomo, 1999, Alkali-activated fly ashes: a cement for the future, Cement Concr. Res., 29, 1323, 10.1016/S0008-8846(98)00243-9

Provis, 2014, Geopolymers and related alkali-activated materials, Annu. Rev. Mater. Res., 44, 299, 10.1146/annurev-matsci-070813-113515

Davidovits, 1991, Geopolymers - inorganic polymeric new materials, J. Therm. Anal., 37, 1633, 10.1007/BF01912193

Davidovits, 1987, Geopolymeric reactions in archaeological cements and in modern blended cements, Concr. Int., 9, 23

Duxson, 2007, Geopolymer technology: the current state of the art, J. Mater. Sci., 42, 2917, 10.1007/s10853-006-0637-z

Ma, 2018, Structural and material performance of geopolymer concrete: a review, Construct. Build. Mater., 186, 90, 10.1016/j.conbuildmat.2018.07.111

Provis, 2018, Alkali-activated materials, Cement Concr. Res., 114, 40, 10.1016/j.cemconres.2017.02.009

Turner, 2013, Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete, Construct. Build. Mater., 43, 125, 10.1016/j.conbuildmat.2013.01.023

Heath, 2014, Minimising the global warming potential of clay based geopolymers, J. Clean. Prod., 78, 75, 10.1016/j.jclepro.2014.04.046

Zhang, 2016, Geopolymer from kaolin in China: an overview, Appl. Clay Sci., 119, 31, 10.1016/j.clay.2015.04.023

Rocha, 2018, Metakaolin-based geopolymer mortars with different alkaline activators (Na+and K+), Construct. Build. Mater., 178, 453, 10.1016/j.conbuildmat.2018.05.172

Humad, 2018, Alkali activation of a high MgO GGBS – fresh and hardened properties, Mag. Concr. Res., 70, 1256, 10.1680/jmacr.17.00436

Abdalqader, 2016, Development of greener alkali-activated cement: utilisation of sodium carbonate for activating slag and fly ash mixtures, J. Clean. Prod., 113, 66, 10.1016/j.jclepro.2015.12.010

Bernal, 2015, Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders, Mater. Struct., 48, 517, 10.1617/s11527-014-0412-6

Gao, 2017, Characterization and application of municipal solid waste incineration (MSWI) bottom ash and waste granite powder in alkali activated slag, J. Clean. Prod., 164, 410, 10.1016/j.jclepro.2017.06.218

Robayo, 2016, Alternative cements based on alkali-activated red clay brick waste, Construct. Build. Mater., 128, 163, 10.1016/j.conbuildmat.2016.10.023

Ye, 2017, Properties of an aged geopolymer synthesized from calcined ore-dressing tailing of bauxite and slag, Cement Concr. Res., 100, 23, 10.1016/j.cemconres.2017.05.017

Leong, 2016, The effect of different Na2O and K2O ratios of alkali activator on compressive strength of fly ash based-geopolymer, Construct. Build. Mater., 106, 500, 10.1016/j.conbuildmat.2015.12.141

Dias, 2019, Effect of Na 2 O/SiO 2 and K 2 O/SiO 2 mass ratios on the compressive strength of non-silicate metakaolin geopolymeric mortars, Mater. Res. Express, 6, 10.1088/2053-1591/ab179d

Clausi, 2018, Reuse of waste sandstone sludge via alkali activation in matrices of fly ash and metakaolin, Construct. Build. Mater., 172, 212, 10.1016/j.conbuildmat.2018.03.221

Zaharaki, 2016, Valorization of construction and demolition (C&D) and industrial wastes through alkali activation, Construct. Build. Mater., 121, 686, 10.1016/j.conbuildmat.2016.06.051

Adesanya, 2017, Alkali activation of ladle slag from steel-making process, J. Sustain. Metall., 3, 300, 10.1007/s40831-016-0089-x

Reig, 2016, Influence of calcium aluminate cement (CAC) on alkaline activation of red clay brick waste (RCBW), Cement Concr. Compos., 65, 177, 10.1016/j.cemconcomp.2015.10.021

Novais, 2016, Waste glass from end-of-life fluorescent lamps as raw material in geopolymers, Waste Manag., 52, 245, 10.1016/j.wasman.2016.04.003

Zhang, 2017, Waste glass as partial mineral precursor in alkali-activated slag/fly ash system, Cement Concr. Res., 102, 29, 10.1016/j.cemconres.2017.08.012

Arulrajah, 2016, Strength and microstructure evaluation of recycled glass-fly ash geopolymer as low-carbon masonry units, Construct. Build. Mater., 114, 400, 10.1016/j.conbuildmat.2016.03.123

Ranjbar, 2014, Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar under elevated temperatures, Construct. Build. Mater., 65, 114, 10.1016/j.conbuildmat.2014.04.064

Rakhimova, 2015, Alkali-activated cements and mortars based on blast furnace slag and red clay brick waste, Mater. Des., 85, 324, 10.1016/j.matdes.2015.06.182

Poinot, 2018, Beneficial use of boiler ash in alkali-activated bricks, Resour. Conserv. Recycl., 128, 1, 10.1016/j.resconrec.2017.09.013

Nazari, 2015, Synthesis of geopolymer from industrial wastes, J. Clean. Prod., 99, 297, 10.1016/j.jclepro.2015.03.003

Zawrah, 2016, Recycling and utilization assessment of waste fired clay bricks (Grog) with granulated blast-furnace slag for geopolymer production, Process Saf. Environ. Protect., 103, 237, 10.1016/j.psep.2016.08.001

Tekin, 2016, Properties of NaOH activated geopolymer with marble, travertine and volcanic tuff wastes, Construct. Build. Mater., 127, 607, 10.1016/j.conbuildmat.2016.10.038

Sun, 2013, Synthesis and thermal behavior of geopolymer-type material from waste ceramic, Construct. Build. Mater., 49, 281, 10.1016/j.conbuildmat.2013.08.063

Ahmari, 2012, Production of eco-friendly bricks from copper mine tailings through geopolymerization, Construct. Build. Mater., 29, 323, 10.1016/j.conbuildmat.2011.10.048

Ascensão, 2017, Red mud-based geopolymers with tailored alkali diffusion properties and pH buffering ability, J. Clean. Prod., 148, 23, 10.1016/j.jclepro.2017.01.150

Reig, 2013, Properties and microstructure of alkali-activated red clay brick waste, Construct. Build. Mater., 43, 98, 10.1016/j.conbuildmat.2013.01.031

Yliniemi, 2015, Alkali activation of recovered fuel-biofuel fly ash from fluidised-bed combustion: stabilisation/solidification of heavy metals, Waste Manag., 43, 273, 10.1016/j.wasman.2015.05.019

Nazari, 2011, Properties of geopolymer with seeded fly ash and rice husk bark ash, Mater. Sci. Eng. A, 528, 7395, 10.1016/j.msea.2011.06.027

Novais, 2016, Porous biomass fly ash-based geopolymers with tailored thermal conductivity, J. Clean. Prod., 119, 99, 10.1016/j.jclepro.2016.01.083

Ozer, 2015, Relations between the structural characteristics and compressive strength in metakaolin based geopolymers with different molar Si/Al ratios, Ceram. Int., 41, 10192, 10.1016/j.ceramint.2015.04.125

Redden, 2014, Microstructure, strength, and moisture stability of alkali activated glass powder-based binders, Cement Concr. Compos., 45, 46, 10.1016/j.cemconcomp.2013.09.011

Cristelo, 2018, Stabilisation of construction and demolition waste with a high fines content using alkali activated fly ash, Construct. Build. Mater., 170, 26, 10.1016/j.conbuildmat.2018.03.057

Fořt, 2018, Application of waste brick powder in alkali activated aluminosilicates: functional and environmental aspects, J. Clean. Prod., 194, 714, 10.1016/j.jclepro.2018.05.181

Lu, 2018, Use of waste glass in alkali activated cement mortar, Construct. Build. Mater., 160, 399, 10.1016/j.conbuildmat.2017.11.080

Manjunath, 2019, Shivam Kumar, U.K. Bala Bharathi, Studies on development of high performance, self-compacting alkali activated slag concrete mixes using industrial wastes, Construct. Build. Mater., 198, 133, 10.1016/j.conbuildmat.2018.11.242

Tuyan, 2018, Effect of alkali activator concentration and curing condition on strength and microstructure of waste clay brick powder-based geopolymer, Compos. B Eng., 135, 242, 10.1016/j.compositesb.2017.10.013

Rovnaník, 2018, Rheological properties and microstructure of binary waste red brick powder/metakaolin geopolymer, Construct. Build. Mater., 188, 924, 10.1016/j.conbuildmat.2018.08.150

Abdollahnejad, 2019, Development of one-part alkali-activated ceramic/slag binders containing recycled ceramic aggregates, J. Mater. Civ. Eng., 31, 1, 10.1061/(ASCE)MT.1943-5533.0002608

Robayo-Salazar, 2018, Life cycle assessment (LCA) of an alkali-activated binary concrete based on natural volcanic pozzolan: a comparative analysis to OPC concrete, Construct. Build. Mater., 176, 103, 10.1016/j.conbuildmat.2018.05.017

Tho-In, 2016, Compressive strength and microstructure analysis of geopolymer paste using waste glass powder and fly ash, J. Clean. Prod., 172, 2892, 10.1016/j.jclepro.2017.11.125

Batista, 2019, Silica fume as precursor in the development of sustainable and high-performance MK-based alkali-activated materials reinforced with short PVA fibers, Front. Mater., 6, 1, 10.3389/fmats.2019.00077

de Vargas, 2011, The effects of Na2O/SiO2molar ratio, curing temperature and age on compressive strength, morphology and microstructure of alkali-activated fly ash-based geopolymers, Cement Concr. Compos., 33, 653, 10.1016/j.cemconcomp.2011.03.006

Tänzer, 2017, Alkali activated slag binder: effect of cations from silicate activators, Mater. Struct., 50, 91, 10.1617/s11527-016-0961-y

Yang, 2012, Hydration products and strength development of calcium hydroxide-based alkali-activated slag mortars, Construct. Build. Mater., 29, 410, 10.1016/j.conbuildmat.2011.10.063

Wang, 2005, Synthesis and mechanical properties of metakaolinite-based geopolymer, Colloids Surfaces A Physicochem. Eng. Asp., 268, 1, 10.1016/j.colsurfa.2005.01.016

Phoo-ngernkham, 2015, Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA–GBFS geopolymer, Construct. Build. Mater., 91, 1, 10.1016/j.conbuildmat.2015.05.001

Phoo-ngernkham, 2017, Effect of sodium hydroxide and sodium silicate solutions on strengths of alkali activated high calcium fly ash containing Portland cement, KSCE J. Civ. Eng., 21, 2202, 10.1007/s12205-016-0327-6

Fernández-Jiménez, 2005, Composition and microstructure of alkali activated fly ash binder: effect of the activator, Cement Concr. Res., 35, 1984, 10.1016/j.cemconres.2005.03.003

Zhang, 2013, Quantitative kinetic and structural analysis of geopolymers. Part 2. Thermodynamics of sodium silicate activation of metakaolin, Thermochim. Acta, 565, 163, 10.1016/j.tca.2013.01.040

Xu, 2000, The geopolymerisation of alumino-silicate minerals, Int. J. Miner. Process., 59, 247, 10.1016/S0301-7516(99)00074-5

Phair, 2001, Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers, Miner. Eng., 14, 289, 10.1016/S0892-6875(01)00002-4

Khale, 2007, Mechanism of geopolymerization and factors influencing its development: a review, J. Mater. Sci., 42, 729, 10.1007/s10853-006-0401-4

Europe, 2004, 16

Tchakouté, 2016, Geopolymer binders from metakaolin using sodium waterglass from waste glass and rice husk ash as alternative activators: a comparative study, Construct. Build. Mater., 114, 276, 10.1016/j.conbuildmat.2016.03.184

Jeon, 2015, Microstructural and strength improvements through the use of Na 2 CO 3 in a cementless Ca(OH) 2 -activated Class F fly ash system, Cement Concr. Res., 67, 215, 10.1016/j.cemconres.2014.10.001

Akturk, 2019, Effect of calcium hydroxide on fresh state behavior of sodium carbonate activated blast furnace slag pastes, Construct. Build. Mater., 212, 388, 10.1016/j.conbuildmat.2019.03.328

Yuan, 2017, Assessing the chemical involvement of limestone powder in sodium carbonate activated slag, Mater. Struct., 50, 136, 10.1617/s11527-017-1003-0

Barbosa, 2000, Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers, Int. J. Inorg. Mater., 2, 309, 10.1016/S1466-6049(00)00041-6

Hanjitsuwan, 2020, Drying shrinkage, strength and microstructure of alkali-activated high-calcium fly ash using FGD-gypsum and dolomite as expansive additive, Cement Concr. Compos., 114, 103760, 10.1016/j.cemconcomp.2020.103760

de Vargas, 2014, Strength development of alkali-activated fly ash produced with combined NaOH and Ca(OH) 2 activators, Cement Concr. Compos., 53, 341, 10.1016/j.cemconcomp.2014.06.012

Bouzón, 2014, Refluxed rice husk ash/NaOH suspension for preparing alkali activated binders, Mater. Lett., 115, 72, 10.1016/j.matlet.2013.10.001

Bernal, 2012, Activation of metakaolin/slag blends using alkaline solutions based on chemically modified silica fume and rice husk ash, Waste Biomass Valorization, 3, 99, 10.1007/s12649-011-9093-3

Mejía, 2013, Ceniza de cascarilla de arroz como fuente de sílice en sistemas cementicios de ceniza volante y escoria activados alcalinamente, Mater. Construcción, 63, 361, 10.3989/mc.2013.04712

Tong, 2018, Use of Vietnamese rice husk ash for the production of sodium silicate as the activator for alkali-activated binders, J. Clean. Prod., 201, 272, 10.1016/j.jclepro.2018.08.025

Geraldo, 2017, Water treatment sludge and rice husk ash to sustainable geopolymer production, J. Clean. Prod., 149, 146, 10.1016/j.jclepro.2017.02.076

Torres-Carrasco, 2015, Waste glass in the geopolymer preparation. Mechanical and microstructural characterisation, J. Clean. Prod., 90, 397, 10.1016/j.jclepro.2014.11.074

Vinai, 2019, Production of sodium silicate powder from waste glass cullet for alkali activation of alternative binders, Cement Concr. Res., 116, 45, 10.1016/j.cemconres.2018.11.008

Živica, 2006, Effectiveness of new silica fume alkali activator, Cement Concr. Compos., 28, 21, 10.1016/j.cemconcomp.2005.07.004

Villaquirán-Caicedo, 2019, Studying different silica sources for preparation of alternative waterglass used in preparation of binary geopolymer binders from metakaolin/boiler slag, Construct. Build. Mater., 227, 1, 10.1016/j.conbuildmat.2019.08.002

Rodríguez, 2013, Effect of nanosilica-based activators on the performance of an alkali-activated fly ash binder, Cement Concr. Compos., 35, 1, 10.1016/j.cemconcomp.2012.08.025

Moraes, 2016, Increasing the sustainability of alkali-activated binders: the use of sugar cane straw ash (SCSA), Construct. Build. Mater., 124, 148, 10.1016/j.conbuildmat.2016.07.090

Alonso, 2019, Olive biomass ash as an alternative activator in geopolymer formation: a study of strength, durability, radiology and leaching behaviour, Cement Concr. Compos., 104, 103384, 10.1016/j.cemconcomp.2019.103384

de Moraes Pinheiro, 2018, Olive-stone biomass ash (OBA): an alternative alkaline source for the blast furnace slag activation, Construct. Build. Mater., 178, 327, 10.1016/j.conbuildmat.2018.05.157

Font, 2017, A 100% waste-based alkali-activated material by using olive-stone biomass ash (OBA) and blast furnace slag (BFS), Mater. Lett., 203, 46, 10.1016/j.matlet.2017.05.129

Soriano, 2020, One-part blast furnace slag mortars activated with almond-shell biomass ash: a new 100% waste-based material, Mater. Lett., 272, 127882, 10.1016/j.matlet.2020.127882

Ban, 2017, Mechanical and durability performance of novel self-activating geopolymer mortars, Procedia Eng., 171, 564, 10.1016/j.proeng.2017.01.374

Peys, 2016, Potassium-rich biomass ashes as activators in metakaolin-based inorganic polymers, Appl. Clay Sci., 119, 401, 10.1016/j.clay.2015.11.003

Pourabbas Bilondi, 2018, Using calcium carbide residue as an alkaline activator for glass powder–clay geopolymer, Construct. Build. Mater., 183, 417, 10.1016/j.conbuildmat.2018.06.190

Phetchuay, 2014, Calcium carbide residue: alkaline activator for clay–fly ash geopolymer, Construct. Build. Mater., 69, 285, 10.1016/j.conbuildmat.2014.07.018

Fernández-Jiménez, 2017, Sustainable alkali activated materials: precursor and activator derived from industrial wastes, J. Clean. Prod., 162, 1200, 10.1016/j.jclepro.2017.06.151

van Riessen, 2013, Bayer-geopolymers: an exploration of synergy between the alumina and geopolymer industries, Cement Concr. Compos., 41, 29, 10.1016/j.cemconcomp.2013.04.010

Choo, 2016, Compressive strength of one-part alkali activated fly ash using red mud as alkali supplier, Construct. Build. Mater., 125, 21, 10.1016/j.conbuildmat.2016.08.015

Font, 2018, Use of residual diatomaceous earth as a silica source in geopolymer production, Mater. Lett., 223, 10, 10.1016/j.matlet.2018.04.010

He, 2013, Synthesis and characterization of red mud and rice husk ash-based geopolymer composites, Cement Concr. Compos., 37, 108, 10.1016/j.cemconcomp.2012.11.010

Koteswara Rao, 2011, Stabilization of expansive soil with rice husk ash, lime and gypsum – an experimental study, Int. J. Eng. Sci. Technol., 3, 8076

Sturm, 2016, Synthesizing one-part geopolymers from rice husk ash, Construct. Build. Mater., 124, 961, 10.1016/j.conbuildmat.2016.08.017

Singh, 2018, Rice husk ash, 417

Nimwinya, 2016, A sustainable calcined water treatment sludge and rice husk ash geopolymer, J. Clean. Prod., 119, 128, 10.1016/j.jclepro.2016.01.060

Hwang, 2015, Effect of alkali-activator and rice husk ash content on strength development of fly ash and residual rice husk ash-based geopolymers, Construct. Build. Mater., 101, 1, 10.1016/j.conbuildmat.2015.10.025

Rodríguez de Sensale, 2010, Effect of rice-husk ash on durability of cementitious materials, Cement Concr. Compos., 32, 718, 10.1016/j.cemconcomp.2010.07.008

Songpiriyakij, 2010, Compressive strength and degree of reaction of biomass- and fly ash-based geopolymer, Construct. Build. Mater., 24, 236, 10.1016/j.conbuildmat.2009.09.002

Mellado, 2014, Carbon footprint of geopolymeric mortar: study of the contribution of the alkaline activating solution and assessment of an alternative route, RSC Adv., 4, 23846, 10.1039/C4RA03375B

de Azevedo, 2017, Influence of incorporation of glass waste on the rheological properties of adhesive mortar, Construct. Build. Mater., 148, 359, 10.1016/j.conbuildmat.2017.04.208

Lu, 2017, Fresh properties of cement pastes or mortars incorporating waste glass powder and cullet, Construct. Build. Mater., 131, 793, 10.1016/j.conbuildmat.2016.11.011

Menchaca-Ballinas, 2019, Low CO2 emission cements of waste glass activated by CaO and NaOH, J. Clean. Prod., 239, 117992, 10.1016/j.jclepro.2019.117992

Zhang, 2016, Comparative study of effect of raw and densified silica fume in the paste, mortar and concrete, Construct. Build. Mater., 105, 82, 10.1016/j.conbuildmat.2015.12.045

Nochaiya, 2010, Utilization of fly ash with silica fume and properties of Portland cement-fly ash-silica fume concrete, Fuel, 89, 768, 10.1016/j.fuel.2009.10.003

Siddique, 2011, Utilization of silica fume in concrete: review of hardened properties, Resour. Conserv. Recycl., 55, 923, 10.1016/j.resconrec.2011.06.012

Sukontasukkul, 2020, Effect of fly ash/silica fume ratio and curing condition on mechanical properties of fiber-reinforced geopolymer, J. Sustain. Cem. Mater., 9, 218

Moraes, 2018, New use of sugar cane straw ash in alkali-activated materials: a silica source for the preparation of the alkaline activator, Construct. Build. Mater., 171, 611, 10.1016/j.conbuildmat.2018.03.230

Phummiphan, 2017, Marginal lateritic soil stabilized with calcium carbide residue and fly ash geopolymers as a sustainable pavement base material, J. Mater. Civ. Eng., 29, 10.1061/(ASCE)MT.1943-5533.0001708

Hanjitsuwan, 2018, Strength development and durability of alkali-activated fly ash mortar with calcium carbide residue as additive, Construct. Build. Mater., 162, 714, 10.1016/j.conbuildmat.2017.12.034

Hanjitsuwan, 2017, Comparative study using Portland cement and calcium carbide residue as a promoter in bottom ash geopolymer mortar, Construct. Build. Mater., 133, 128, 10.1016/j.conbuildmat.2016.12.046

Suksiripattanapong, 2017, Water treatment sludge–calcium carbide residue geopolymers as nonbearing masonry units, J. Mater. Civ. Eng., 29, 10.1061/(ASCE)MT.1943-5533.0001944

Phoo-ngernkham, 2020, Low cost and sustainable repair material made from alkali-activated high-calcium fly ash with calcium carbide residue, Construct. Build. Mater., 247, 118543, 10.1016/j.conbuildmat.2020.118543