Ứng dụng Dữ liệu Mềm trong Ước lượng Tài nguyên Hạt nhân

Springer Science and Business Media LLC - Tập 30 - Trang 1069-1091 - 2020
Steinar Løve Ellefmo1, Thomas Kuhn2
1Norwegian University of Science and Technology (NTNU), Trondheim, Norway
2Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany

Tóm tắt

Khoáng sản và kim loại đóng vai trò cực kỳ quan trọng trong xã hội của chúng ta, và nguồn tài nguyên khoáng sản trên và dưới đáy đại dương sâu đại diện cho một tiềm năng khổng lồ. Việc quyết định xem khai thác từ đáy đại dương sâu có khả thi về mặt tài chính, môi trường và công nghệ hay không cần phải có thông tin. Do độ sâu lớn và điều kiện khắc nghiệt, việc thu thập thông tin này tốn kém và tiêu tốn thời gian và tài nguyên. Do đó, điều quan trọng là sử dụng mọi dữ liệu một cách tối ưu. Trong nghiên cứu này, dữ liệu được thu thập từ hình ảnh và kiến thức chuyên gia đã được sử dụng để ước lượng sự phong phú tối thiểu và tối đa của hạt nhân tại các vị trí hình ảnh từ một khu vực trong vùng Clarion-Clipperton ở phía Bắc Thái Bình Dương. Từ các giá trị tối thiểu và tối đa, lõi hộp và sự tương quan không gian được định lượng thông qua variogram, một kỳ vọng có điều kiện và sự không chắc chắn liên quan đã được thu được thông qua bộ mẫu Gibbs. Kỳ vọng có điều kiện và sự không chắc chắn đã được sử dụng cùng với dữ liệu phong phú giả định từ các lõi hộp trong một bài tập kriging để thu được ước lượng tốt hơn về sự phong phú theo từng khối. Việc đánh giá chất lượng của các ước lượng được thực hiện dựa trên tiêu chí khoảng cách và trên các chỉ số chất lượng kriging như độ dốc hồi quy và trọng số trung bình. Từ các vị trí hình ảnh gốc, các cấu hình hình ảnh thay thế đã được thử nghiệm và cho thấy rằng các lựa chọn thay thế như vậy tạo ra các ước lượng tốt hơn, mà không tốn thêm chi phí. Các cải tiến trong tương lai sẽ tập trung vào việc nâng cao ước lượng của các giá trị tối thiểu và tối đa tại các vị trí hình ảnh.

Từ khóa

#Khai thác khoáng sản #tài nguyên nodule #kriging #Gibbs sampler #đại dương sâu

Tài liệu tham khảo

Abrahamsen, P., & Benth, F. E. (2001). Kriging with inequality constraints. Mathematical Geology, 33, 719–744. https://doi.org/10.1023/A:1011078716252. Armstrong, M. (1998). Basic linear geostatistics. Berlin: Springer. Benndorf, J. (2015). Vorratsklassifikation nach internationales Standards - Anforderungen und Modellenansätze in der Lagerstättenbearbaeitung. Markscheidewesen, 122(2–3), 6–14. Blom, M., Pearce, A. R., & Stuckey, P. J. (2019). Short-term planning for open pit mines: a review. International Journal of Mining, Reclamation and Environment, 33(5), 318–339. Boucher, A., & Dimitrakopoulos, R. (2012). Multivariate block-support simulation of the Yandi iron ore deposit, Western Australia. Mathematical Geosciences, 44(4), 449–468. Buyong, T. (2007). Spatial data analysis for geographic information science. Penerbit UTM, Skudai, Johor Bahru. http://eprints.utm.my/id/eprint/30021/. Castrignanò, A., Quarto, R., Venezia, A., & Buttafuoco, G. (2019). A comparison between mixed support kriging and block cokriging for modelling and combining spatial data with different support. Precision Agriculture, 20(2), 193–213. Cathles, L. M. (2011). What processes at mid-ocean ridges tell us about volcanogenic massive sulfide deposits. Mineralium Deposita, 46(5–6), 639–657. Chilès, J. P., & Delfiner, P. (2012). Geostatistics: Modeling spatial uncertainty (Vol. 713). London: Wiley. Eidsvik, J., & Ellefmo, S. L. (2013). The value of information in mineral exploration within a multi-gaussian framework. Mathematical Geosciences, 45(7), 777–798. Eidsvik, J., Mukerji, T., & Bhattacharjya, D. (2015). Value of information in the earth sciences: Integrating spatial modeling and decision analysis. Cambridge: Cambridge University Press. Ellefmo, S. L., & Kuhn, T. (2018). Towards an improved nodule resource estimation and classification using hard and soft data. Presented at the 47th Underwater Mining Conference, Bergen. Ellefmo, S. L., Søreide, F., Cherkashov, G., Juliani, C., Panthi, K. K., Petukhov, S., et al. (2019). Quantifying the unknown. Cappelen Damm Akademiske. https://doi.org/10.23865/noasp.81. Elshkaki, A., Graedel, T. E., Ciacci, L., & Reck, B. K. (2018). Resource demand scenarios for the major metals. Environmental Science and Technology, 52(5), 2491–2497. Felix, D. (1980). Some problems in making nodule abundance estimates from seafloor photographs. Marine Mining, 2, 293–302. Gazis, I.-Z., Schoening, T., Alevizos, E., & Greinert, J. (2018). Quantitative mapping and predictive modeling of Mn nodules’ distribution from hydroacoustic and optical AUV data linked by random forests machine learning. Biogeosciences, 15(23), 7347–7377. Gelfand, A. E., & Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85(410), 398–409. https://doi.org/10.2307/2289776. Goovaerts, P. (1997). Geostatistics for natural resources evaluation. Oxford: Oxford University Press. Grunwald, S. (2005). What do we really know about space-time continuum of soil-landscapes? In S. Grunwald (Ed.), Environmental soil-landscape modeling: Geographic information technologies and pedometrics (pp. 3–36). Boca Raton: CRC Taylor & Francis. Hannington, M. D. (2013). The role of black smokers in the Cu mass balance of the oceanic crust. Earth and Planetary Science Letters, 374, 215–226. Hannington, M., Jamieson, J., Monecke, T., Petersen, S., & Beaulieu, S. (2011). The abundance of seafloor massive sulfide deposits. Geology, 39(12), 1155–1158. https://doi.org/10.1130/G32468.1. Hansen, T. M., Cordua, K. S., & Mosegaard, K. (2012). Inverse problems with non-trivial priors: Efficient solution through sequential Gibbs sampling. Computational Geosciences, 16(3), 593–611. Hein, J. R., Koschinsky, A., & Kuhn, T. (2020). Deep-ocean polymetallic nodules as a resource for critical materials. Nature Reviews Earth & Environment, 1(3), 158–169. Hekmat, A., Osanloo, M., & Moarefvand, P. (2013). Block size selection with the objective of minimizing the discrepancy in real and estimated block grade. Arabian Journal of Geosciences, 6(1), 141–155. Heller, C., Kuhn, T., Versteegh, G. J. M., Wegorzewski, A. V., & Kasten, S. (2018). The geochemical behavior of metals during early diagenetic alteration of buried manganese nodules. Deep Sea Research Part I: Oceanographic Research Papers, 142, 16–33. Heuvelink, G. B. M., Brus, D., Hengl, T., Kempen, B., Leenaars, J. G. B., & Ruiperez-Gonzalez, M. (2016). Uncertainty quantification of interpolated maps derived from observations with different accuracy levels. In Proceedings of spatial accuracy 2016 (pp. 49–51). Presented at the 12th international symposium on spatial accuracy assessment in natural resources and environmental sciences, accuracy 2016, Montpellier, France: International Spatial Accuracy Research Association (ISARA). Retrieved April 15, 2020, from https://research.wur.nl/en/publications/uncertainty-quantification-of-interpolated-maps-derived-from-obse. Hozo, S. P., Djulbegovic, B., & Hozo, I. (2005). Estimating the mean and variance from the median, range, and the size of a sample. BMC Medical Research Methodology, 5(1), 13. https://doi.org/10.1186/1471-2288-5-13. ISA. (2015). Reporting standard of the international seabed authority for mineral exploration results assessments, mineral resources and mineral reserves. International Seabed Authority. Retrieved April 17, 2020, from https://ran-s3.s3.amazonaws.com/isa.org.jm/s3fs-public/documents/EN/Contracts/Templates/AnnexV.pdf. Isaaks, E. (2005). The kriging oxymoron: A conditionally unbiased and accurate predictor. In O. Leuangthong, & C. V. Deutsch (Eds.), Geostatistics Banff 2004 (2nd ed., Vol. 14, pp. 363–374). Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-3610-1_37. JORC. (2012). Australasian code for reporting of exploration results, mineral resources and ore reserves. Joint Ore Reserves Committee: The Australasian Institute of Mining and Metallurgy, Australian Institute of Geoscientists and Minerals Council of Australia. Retrieved March 20, 2020, from http://www.jorc.org/docs/JORC_code_2012.pdf. Journel, A. G., & Huijbregts, C. (1978). Mining geostatistics. London: Academic Press. Kang, J., Jin, R., Li, X., & Zhang, Y. (2017). Block kriging with measurement errors: A case study of the spatial prediction of soil moisture in the middle reaches of Heihe River Basin. IEEE Geoscience and Remote Sensing Letters, 14(1), 87–91. Knobloch, A., Kuhn, T., Rühlemann, C., Hertwig, T., Zeissler, K.-O., & Noack, S. (2017). Predictive mapping of the nodule abundance and mineral resource estimation in the Clarion-Clipperton zone using artificial neural networks and classical geostatistical methods. In R. Sharma (Ed.), Deep-sea mining (pp. 189–212). Cham: Springer. https://doi.org/10.1007/978-3-319-52557-0_6. Koschinsky, A., & Hein, J. R. (2003). Uptake of elements from seawater by ferromanganese crusts: Solid-phase associations and seawater speciation. Marine Geology, 198(3–4), 331–351. Kuhn, T., & Shipboard Scientific Party. (2015). Low-temperature fluid circulation at seamounts and hydrothermal pits: Heat flow regime, impact on biogeochemical processes and its potential influence on the occurrence and composition of manganese nodules in the NE Pacific, Cruise Report SO240/FLUM (No. https://doi.org/10.2312/cr_so240) (p. 185). Hannover, Germany: Bundesanstalt für Geowissenschaften und Rohstoffe. Retrieved April 15, 2020, from https://www.tib.eu/de/suchen/?tx_tibsearch_search%5Bdocid%5D=awi%3Adoi~10.2312%252Fcr_so240&tx_tibsearch_search%5Bcontroller%5D=Download&cHash=12ef30b4e13ca8dc5fe5bab62a08bf26#download-mark. Kuhn, T., & Rathke, M. (2017). Visual data acquisition in the field and interpretation for SMnN (No. BLUE MINING D1.31b). Retrieved April 24, 2020, from https://bluemining.eu/download/project_results/public_reports/BLUE-MINING-D1.31b-Final-Report-on-visual-data-acquisition-in-the-field-and-interpretation-for-SMnN.pdf. Kuhn, T., Rühlemann, C., & Knobloch, A. (2016). Classification of manganese nodule estimates: Can we reach the “measured resource” level? In S. Hong (Ed.), Resource and environmental assessments for seafloor mining development. Presented at the Underwater Mining Conference, Incheon, South Korea. Retrieved April 16, 2020, from http://oceanrep.geomar.de/43434/. Kuhn, T., Uhlenkott, K., Martinez, P., Vink, A., & Rühlemann, C. (2020). Manganese Nodule Fields from the NE Pacific as Benthic Habitats. In P. Harris & E. Baker (Eds.), Seafloor geomorphology as benthic habitat (2nd ed., pp. 933–947). Amsterdam: Elsevier. Kuhn, T., Versteegh, G. J. M., Villinger, H., Dohrmann, I., Heller, C., Koschinsky, A., et al. (2017a). Widespread seawater circulation in 18–22 Ma oceanic crust: Impact on heat flow and sediment geochemistry. Geology, 45(9), 799–802. Kuhn, T., Wegorzewski, A., Rühlemann, C., & Vink, A. (2017b). Composition, formation, and occurrence of polymetallic nodules. In R. Sharma (Ed.), Deep-sea mining: Resource potential, technical and environmental considerations (pp. 23–63). Cham: Springer. https://doi.org/10.1007/978-3-319-52557-0_2. Lipton, I. T., Nimmo, M. J., & Parianos, J. M. (2016). NI 43-101 technical report TOML Clarion Clipperton Zone project, Pacific Ocean (p. 280). Lynch, S. M. (2007). Introduction to applied Bayesian statistics and estimation for social scientists. New York: Springer. Månberger, A., & Stenqvist, B. (2018). Global metal flows in the renewable energy transition: Exploring the effects of substitutes, technological mix and development. Energy Policy, 119, 226–241. Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58(8), 1246–1266. https://doi.org/10.2113/gsecongeo.58.8.1246. Mewes, K., Mogollón, J., Picard, A., Rühlemann, C., Kuhn, T., Nöthen, K., et al. (2014). Impact of depositional and biogeochemical processes on small scale variations in nodule abundance in the Clarion-Clipperton Fracture Zone. Deep Sea Research Part I: Oceanographic Research Papers, 91, 125–141. Michalak, A. M. (2008). A Gibbs sampler for inequality-constrained geostatistical interpolation and inverse modeling: Constrained Geostatistical Gibbs sampler. Water Resources Research. https://doi.org/10.1029/2007WR006645. Mucha, J., & Wasilewska-Błaszczyk, M. (2020). Estimation accuracy and classification of polymetallic nodule resources based on classical sampling supported by seafloor photography (Pacific Ocean, Clarion-Clipperton Fracture Zone, IOM area). Minerals, 10(3), 263. https://doi.org/10.3390/min10030263. Nowak, M., & Leuangthong, O. (2017). Conditional Bias In Kriging: Let’s keep it. In J. J. Gómez-Hernández, J. Rodrigo-Ilarri, M. E. Rodrigo-Clavero, E. Cassiraga, & J. A. Vargas-Guzmán (Eds.), Geostatistics valencia 2016 (pp. 303–318). Cham: Springer. https://doi.org/10.1007/978-3-319-46819-8_20. Omre, H. (1987). Bayesian kriging–merging observations and qualified guesses in kriging. Mathematical Geology, 19, 15. https://doi.org/10.1007/BF01275432. Onibon, H., Lebel, T., Afouda, A., & Guillot, G. (2004). Gibbs sampling for conditional spatial disaggregation of rain fields. Water Resources Research. https://doi.org/10.1029/2003WR002009. Rivoirard, J. (1987). Two key parameters when choosing the kriging neighborhood. Mathematical Geology, 19(8), 851–856. Robert, C. P. (2015). The Metropolis-Hastings algorithm. In N. Balakrishnan, T. Colton, B. Everitt, W. Piegorsch, F. Ruggeri, & J. L. Teugels (Eds.), Wiley StatsRef: Statistics reference online (pp. 1–15). Chichester: Wiley. https://doi.org/10.1002/9781118445112.stat07834. Rossi, M. E., & Deutsch, C. V. (2013). Mineral resource estimation. New York: Springer. Rühlemann, C., & Shipboard Scientific Party. (2018). Geology, Biodiversity and Environment of the German license area for the exploration of polymetallic nodules in the equatorial NE Pacific. Cruise Report of R/V SONNE Cruise MANGAN 2018 (p. 173). Hannover: Bundesanstalt für Geowissenschaften und Rohstoffe. Schöning, T., Kuhn, T., & Nattkemper, T. W. (2012). Estimation of polymetallic nodule coverage in benthic images. In H. Zhou & C. L. Morgan (Eds.), Marine minerals: Finding the right balance of sustainable development and environmental protection (p. 11). Shanghai: The Underwater Mining Institute. Retrieved April 15, 2020, from http://www.timmschoening.de/assets/pdfs/Schoening-UMI2012.pdf. Sharma, R. (2017). Deep-sea mining: Resource potential, technical and environmental considerations. New York, NY: Springer. Singer, D. A. (2014). Base and precious metal resources in seafloor massive sulfide deposits. Ore Geology Reviews, 59, 66–72. Singer, D. A. (2017). Future copper resources. Ore Geology Reviews, 86, 271–279. Snowden. (2017). Supervisor 8.7—Multi-block kriging neighbourhood analysis. Snowden Group|Mining and Technology Consultants. Retrieved February 19, 2020, from https://snowdengroup.com/news/supervisor-8-7-multi-block-kriging-neighbourhood-analysis/. Teske, S. (Ed.). (2019). Achieving the Paris climate agreement goals: Global and regional 100% renewable energy scenarios with non-energy GHG pathways for +1.5°C and +2°C. Cham: Springer. https://doi.org/10.1007/978-3-030-05843-2. Wackernagel, H. (2010). Multivariate geostatistics. Softcover version of original hardcover edition 2003 (3rd ed.). Berlin: Springe. Wackernagel, H., Bertino, L., Sierra, J. P., & Gonzales del Rio, J. (2002). Multivariate kriging for interpolating with data from different sources. In C. W. Anderson, V. Barnett, P. C. Chatwin, & A. H. El-Shaarawi (Eds.), Quantitative methods for current environmental issues (pp. 57–75). London: Springer, London. https://doi.org/10.1007/978-1-4471-0657-9. Yildirim, I. (2012). Bayesian inference: Gibbs sampling (p. 6). Retrieved February 1, 2020, from http://www.mit.edu/~ilkery/papers/GibbsSampling.pdf. Yoo, C. M., Joo, J., Lee, S. H., Ko, Y., Chi, S.-B., Kim, H. J., et al. (2018). Resource assessment of polymetallic nodules using acoustic backscatter intensity data from the korean exploration area, northeastern equatorial pacific. Ocean Science Journal, 53(2), 381–394.