Application of Prussian blue nanoparticles for the radioactive Cs decontamination in Fukushima region
Tài liệu tham khảo
Barton, 1958, Chemical processing wastes. recovering fission products, Ind. Eng. Chem., 50, 212, 10.1021/ie50578a039
Bolter, 1964, The distribution of rubidium, cesium and barium in the oceans, Geochim. Cosmochim. Acta, 28, 1459, 10.1016/0016-7037(64)90161-9
Borai, 2009, Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals, J. Hazard. Mater, 172, 416, 10.1016/j.jhazmat.2009.07.033
Cash, 1997
Chen, 2015, Prussian blue (PB) granules for cesium (Cs) removal from drinking water, Sep. Purif. Technol., 143, 146, 10.1016/j.seppur.2015.01.040
Clearfield, 1982
Haas, 1993, A review of information on ferrocyanide solids for removal of cesium from solutions, Sep. Sci. Technol., 28, 2479, 10.1080/01496399308017493
1957
IAEA, 1989
IAEA, 2006
IAEA, 2008
Ishizaki, 2013, Proton-exchange mechanism of specific Cs+ adsorption via lattice defect sites of Prussian blue filled with coordination and crystallization water molecules, Dalton Trans., 42, 16049, 10.1039/c3dt51637g
Kogure, 2012, XRD and HRTEM evidence for fixation of cesium ions in vermiculite clay, Chem. Lett., 41, 380, 10.1246/cl.2012.380
Kozai, 2012, Chemical states of fallout radioactive Cs in the soils deposited at Fukushima Daiichi nuclear power plant accident, J. Nucl. Sci. Technol., 49, 473, 10.1080/00223131.2012.677131
Misaelides, 2011, Application of natural zeolites in environmental remediation: a short review, Microporous Mesoporous Mater, 144, 15, 10.1016/j.micromeso.2011.03.024
Nielsen, 1987, In vitro study of 137Cs Sorption by Hexacyanoferrates(II), Z. Fur Naturforsch. Sect. B a J. Chem. Sci., 42b, 1451, 10.1515/znb-1987-1114
NIES
Niimura, 2015, Physical properties, structure, and shape of radioactive Cs from the Fukushima Daiichi nuclear power plant accident derived from soil, bamboo and shiitake mushroom measurements, J. Environ. Radioact., 139, 234, 10.1016/j.jenvrad.2013.12.020
NIRS, 2006
Parajuli, 2014, Variation in available cesium concentration with parameters during temperature induced extraction of cesium from soil, J. Environ. Radioact., 140C, 78
Parajuli, 2013, Dealing with the aftermath of Fukushima Daiichi nuclear accident: decontamination of radioactive cesium enriched ash, Environ. Sci. Technol., 47, 3800, 10.1021/es303467n
Safety of Nuclear Power Reactors
Sangvanich, 2010, Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica, J. Hazard. Mater, 182, 225, 10.1016/j.jhazmat.2010.06.019
Sverdrup, 1942, 165
Takahashi, 2015, Efficient synthesis of size-controlled open-framework nanoparticles fabricated with a micro-mixer: route to the improvement of cs-adsorption performance, Green Chem., 10.1039/C5GC00757G
Tananaev, 1958, New data on the chemistry of some of the rare elements, Russ. Chem. Bull., 6, 1447, 10.1007/BF01169748
Torad, 2012, Large Cs adsorption capability of nanostructured Prussian Blue particles with high accessible surface areas, J. Mater. Chem., 22, 10.1039/c2jm32805d
Tusa, 2007
Vandebroek, 2012, Relevance of Radiocaesium Interception Potential (RIP) on a worldwide scale to assess soil vulnerability to 137Cs contamination, J. Environ. Radioact., 104, 87, 10.1016/j.jenvrad.2011.09.002
Wendling, 2005, Cesium desorption from illite as affected by exudates from rhizosphere bacteria, Environ. Sci. Technol., 39, 4505, 10.1021/es048809p