Application of HPLC–PDA–MS metabolite profiling to investigate the effect of growth temperature and day length on blackcurrant fruit

J. William Allwood1, Tomasz L. Woznicki2,3, Yun Xu4,5, Alexandre Foito1, Kjersti Aaby6, Julie Sungurtas1, Sabine Freitag1, Royston Goodacre5,4, Derek Stewart7,1, Siv Fagertun Remberg2, Ola M. Heide8, Anita Sønsteby3
1Environmental and Biochemical Sciences, James Hutton Institute, Dundee, UK
2Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
3NIBIO, Norwegian Institute of Bioeconomy Research, Ås, Norway
4School of Chemistry, Manchester Institute for Biotechnology, University of Manchester, Manchester, UK
5Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
6Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), Ås, Norway
7School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy, Engineering, Heriot-Watt University, Edinburgh, UK
8Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agasse, A., Vignault, C., Kappel, C., Conde, C., Geros, H., & Delrot, S. (2009). Sugar transport and sugar sensing in grape. In K. A. Roubelakis-Angelakis (Ed.), Grapevine molecular physiology and biotechnology (pp. 105–128). New York: Springer.

Allwood, J. W., De Vos, R. C. H., Moing, A., Deborde, C., Erban, A., Kopka, J., Goodacre, R., & Hall, R. (2011). Plant metabolomics and its potential for systems biology research: Background concepts, technology and methodology. Methods in Systems Biology, 500, 299.

Allwood, J. W., & Goodacre, R. (2010). An introduction to liquid chromatography–mass spectrometry instrumentation applied in plant metabolomic analysis. Phytochemical Analysis, 21(1), 33–47.

Allwood, J. W., Weber, R. J. M., Zhou, J., He, S., Viant, M. R., & Dunn, W. B. (2013). CASMI—the small molecule identification proess from a Birmingham perspective. Metabolites, 3(2), 397–411.

Biais, B., Allwood, J. W., Deborde, C., Xu, Y., Maucourt, M., Beauvoit, B., Dunn, W. B., Jacob, D., Goodacre, R., Rolin, D., & Moing, A. (2009). 1H-NMR, GC-EI-TOFMS, and dataset correlation for fruit metabolomics: Application to spatial metabolite analysis in melon. Analytical Chemistry, 81(8), 2884–2894.

Brennan, R. M., & Graham, J. (2009). Improving fruit quality in Rubus and Ribes through breeding. Functional Plant Science and Biotechnology, 3(1), 22–29.

Brown, M., Dunn, W. B., Dobson, P., Patel, Y., Winder, C. L., Francis-McIntyre, S., Begley, P., Carroll, K., Broadhurst, D., Tseng, A., Swainston, N., Spasic, I., Goodacre, R., & Kell, D. B. (2009). Mass spectrometry tools and metabolite-specific databases for molecular identification in metabolomics. Analyst, 134(7), 1322–1332.

Cohen, S. D., Tarara, J. M., & Kennedy, J. A. (2008). Assessing the impact of temperature on the development and composition of grape berries. Analytica Chimica Acta, 621(1), 57–67.

Dai, Z. W., Meddar, M., Renaud, C., Merlin, I., Hilbert, G., Delrot, S., & Gomès, E. (2014). Long-term in vitro culture of grape berries and its application to assess the effects of sugar supply on anthocyanin accumulation. Journal of Experimental Botany, 65(16), 4665–4677.

De Guida, R., Engel, J., Allwood, J. W., Weber, R. J. M., Jones, M. R., Sommer, U., Viant, M. R., & Dunn, W. B. (2016). Non-targeted UHPLC-MS metabolomics data processing methods: A comparative investigation of normalisation, missing value imputation, transformation and scaling. Metabolomics, 12(5), 93.

de Rosas, I., Ponce, M. T., Malovini, E., Deis, L., Cavagnaro, B., & Cavagnaro, P. (2017). Loss of anthocyanins and modification of the anthocyanin profiles in grape berries of Malbec and Bonarda grown under high temperature conditions. Plant Science, 258, 137–145.

Gorinstein, S., Leontowicz, H., Leontowicz, M., Krzeminski, R., Gralak, M., Delgado-Licon, E., Martinez, A., Alma, L., Katrich, E., & Trakhtenberg, S. (2005). Changes in plasma lipid and antioxidant activity in rats as a result of naringin and red grapefruit supplementation. Journal of Agricultural and Food Chemistry, 53(8), 3223–3228.

Hummer, K. E., & Dale, A. (2010). Horticulture of Ribes. Forest Pathology, 40(3-4), 251–263.

IPCC. (2014). In C. B. Field, et al. (Eds.) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change. Cambridge Univ. Press.

Jaakola, L., & Hohtola, A. (2010). Effect of latitude on flavonoid biosynthesis in plants. Plant, Cell & Environment, 33(8), 1239–1247.

Jarret, D., Morris, J., Cullen, D. W., Gordon, S. L., Verrall, S. R., Milne, L., Hedley, P. E., Allwood, J. W., Brennan, R. M., & Hancock, R. D. (2018). A transcript and metabolite atlas of blackcurrant fruit development highlights hormonal regulation and reveals the role of key transcription factors. Frontiers in Plant Science, 9, 1235.

Kaldmäe, H., Kikas, A., Arus, L., & Libek, A.-V. (2013). Genotype and microclimate conditions influence ripening pattern and quality of blackcurrant (Ribes nigrum L.) fruit. Žemdirbystė (Agriculture), 100(2), 167–174.

Krüger, E., Dietrich, H., Hey, M., & Patz, C. D. (2011). Effects of cultivar, yield, berry weight, temperature and ripening stage on bioactive compounds of black currants. Journal of Applied Botany and Food Quality, 84(1), 40–46.

Lin-Wang, K., Micheletti, D., Palmer, J., Volz, R., Lozano, L., Espley, R., Hellens, R. P., Chagne, D., Rowan, D. D., & Troggio, M. (2011). High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. Plant, Cell & Environment, 34(7), 1176–1190.

Mann, N. A. (2015). Intensive berry production using greenhouses, substrates and hydroponics. Is this the way forward? Nuffield Australia, Project No 1415.

Moretti, C. L., Mattos, L. M., Calbo, A. G., & Sargent, S. A. (2010). Climate changes and potential impacts on postharvest quality of fruit and vegetable crops: A review. Food Research International, 43(7), 1824–1832.

Mori, K., Goto-Yamamoto, N., Kitayama, M., & Hashizume, K. (2007). Loss of anthocyanins in red-wine grape under high temperature. Journal of Experimental Botany, 58(8), 1935–1945.

Mullard, G., Allwood, J. W., Webber, R. J. M., Brown, M., Begley, P., Hollywood, K. A., Jones, M., Unwin, R. D., Bishop, P. N., Cooper, G. J. S., & Dunn, W. B. (2015). A new strategy for MS/MS data acquisition applying multiple data dependent experiments on Orbitrap mass spectrometers in non-targeted metabolomics applications. Metabolomics, 11(5), 1068–1080.

Mustafa, A., Imran, M., Ashraf, M., & Mahmood, K. (2018). Perspectives of using l-tryptophan for improving productivity of agricultural crops: A review. Pedosphere, 28(1), 16–34.

Sønsteby, A., & Heide, O. M. (2011). Elevated autumn temperature promotes growth cessation and flower formation in black currant cultivars (Ribes nigrum L.). The Journal of Horticultural Science and Biotechnology, 86(2), 120–127.

Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., Fan, T. W.-M., Fiehn, O., Goodacre, R., Griffin, J. L., Hankemeier, T., Hardy, N., Harnly, J., Higashi, R., Kopka, J., Lane, A. N., Lindon, J. C., Marriott, P., Nicholls, A. W., Reily, M. D., Thaden, J. J., & Viant, M. R. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3(3), 211–221.

Treutter, D. (2006). Significance of flavonoids in plant resistance: A review. Environmental Chemistry Letters, 4(3), 147–157.

Ubi, B. E., Honda, C., Bessho, H., Kondo, S., Wada, M., Kobayashi, S., & Moriguchi, T. (2006). Expression analysis of anthocyanin biosynthetic genes in apple skin: Effect of UV-B and temperature. Plant Science, 170(3), 571–578.

Vagiri, M., Ekholm, A., Öberg, E., Johansson, E., Andersson, S. C., & Rumpunen, K. (2013). Phenols and ascorbic acid in black currants (Ribes nigrum L.): Variation due to genotype, location, and year. Journal of Agricultural and Food Chemistry, 61(39), 9298–9306.

Walker, P. G., Viola, R., Woodhead, M., Jorgensen, L., Gordon, S. L., Brennan, R. M., & Hancock, R. D. (2010). Ascorbic acid content of blackcurrant fruit is influenced by both genetic and environmental factors. Functional Plant Science and Biotechnology, 4, 40–52.

Woznicki, T. L., Aaby, K., Sønsteby, A., Heide, O. M., Wold, A. B., & Remberg, S. F. (2016). Influence of controlled postflowering temperature and daylength on individual phenolic compounds in four black currant cultivars. Journal of Agricultural and Food Chemistry, 64(4), 752–761.

Woznicki, T. L., Heide, O. M., Sønsteby, A., Wold, A. B., & Remberg, S. F. (2015a). Yield and fruit quality of black currant (Ribes nigrum L.) are favoured by precipitation and cool summer conditions. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 65(8), 702–712.

Woznicki, T. L., Heide, O. M., Sønsteby, A., Wold, A. B., & Remberg, S. F. (2015b). Effects of controlled post-flowering temperature and daylength on chemical composition of four black currant (Ribes nigrum L.) cultivars of contrasting origin. Scientia Horticulturae, 197, 627–636.

Woznicki, T. L., Sønsteby, A., Aaby, K., Martinsen, B. K., Heide, O. M., Wold, A. B., & Remberg, S. F. (2017). Ascorbate pool, sugars and organic acids in black currant (Ribes nigrum L.) berries are strongly influenced by genotype and post-flowering temperature. Journal of the Science of Food and Agriculture, 97(4), 1302–1309.

Yáñez, J. A., Andrews, P. K., & Davies, N. M. (2007). Methods of analysis and separation of chiral flavonoids. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 848(2), 159–181.

Zheng, J., Huang, C., Yang, B., Kallio, H., Liu, P., & Ou, S. (2018). Regulation of phytochemicals in fruits and berries by environmental variation—Sugars and organic acids. Journal of Food Biochemistry. ( https://doi.org/10.1111/jfbc.12642 ).

Zheng, J., Yang, B., Ruusunen, V., Laaksonen, O., Tahvonen, R., Hellsten, J., & Kallio, H. (2012). Compositional differences of phenolic compounds between black currant (Ribes nigrum L.) cultivars and their response to latitude and weather conditions. Journal of Agricultural and Food Chemistry, 60(26), 6581–6593.

Ziliotto, F., Corso, M., Rizzini, F. M., Rasori, A., Botton, A., & Bonghi, C. (2012). Grape berry ripening delay induced by a pre-véraison NAA treatment is paralleled by a shift in the expression pattern of auxin- and ethylene-related genes. BMC Plant Biology, 12(1), 185.

Zoratti, L., Karppinen, K., Luengo Escobar, A., Häggman, H., & Jaakola, L. (2014). Light-controlled flavonoid biosynthesis in fruits. Frontiers in Plant Science, 5, 534.