Applicability of the q-analogue of Zeilberger’s algorithm

Journal of Symbolic Computation - Tập 39 - Trang 155-170 - 2005
William Y.C. Chen1, Qing-Hu Hou1, Yan-Ping Mu1
1Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, PR China

Tài liệu tham khảo

Abramov, 2002, Applicability of Zeilberger’s algorithm to hypergeometric terms Abramov, 2003, When does Zeilberger’s algorithm succeed?, Adv. Appl. Math., 30, 424, 10.1016/S0196-8858(02)00504-3 Abramov, 2002, A criterion for the applicability of Zeilberger’s algorithm to rational functions, Discrete Math., 259, 1, 10.1016/S0012-365X(02)00442-9 Abramov, 1998, q-hypergeometric solutions of q-difference equations, Discrete Math., 180, 3, 10.1016/S0012-365X(97)00106-4 Abramov, 2002, Rational normal forms and minimal decompositions of hypergeometric terms, J. Symbolic Comput., 33, 521, 10.1006/jsco.2002.0522 Abramov, 2002, On the structure of multivariate hypergeometric terms, Adv. Appl. Math., 29, 386, 10.1016/S0196-8858(02)00022-2 Böing, 1999, Algorithms for q-hypergeometric summation in computer algebra, J. Symbolic Comput., 28, 777, 10.1006/jsco.1998.0339 Cohn, 1965 Gel’fand, 1992, General hypergeometric systems of equations and series of hypergeometric type, Uspekhi Mat. Nauk, 47, 3 Graham, 1994 Hou, 2004, k-Free recurrences of double hypergeometric terms, Adv. Appl. Math., 32, 468, 10.1016/S0196-8858(03)00056-3 Koornwinder, 1993, On Zeilberger’s algorithm and its q-analogue, J. Comput. Appl. Math., 48, 91, 10.1016/0377-0427(93)90317-5 Ore, 1930, Sur la forme des fonctions hypergéométriques de plusieurs variables, J. Math. Pures Appl., 9, 311 Paule, 1997, A Mathematica q-analogue of Zeilberger’s algorithm based on an algebraically motivated approach to q-hypergeometric telescoping, vol. 14, 179 Petkovšek, 1996, A=B, 10.1201/9781439864500 Sato, 1990, Theory of prehomogeneous vector spaces (algebraic part), Nagoya Math. J., 120, 1, 10.1017/S0027763000003214 Wilf, 1992, An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities, Invent. Math., 108, 575, 10.1007/BF02100618 Zeilberger, 1991, The method of creative telescoping, J. Symbolic Comput., 11, 195, 10.1016/S0747-7171(08)80044-2