Applicability of the q -analogue of Zeilberger’s algorithm
Tài liệu tham khảo
Abramov, 2002, Applicability of Zeilberger’s algorithm to hypergeometric terms
Abramov, 2003, When does Zeilberger’s algorithm succeed?, Adv. Appl. Math., 30, 424, 10.1016/S0196-8858(02)00504-3
Abramov, 2002, A criterion for the applicability of Zeilberger’s algorithm to rational functions, Discrete Math., 259, 1, 10.1016/S0012-365X(02)00442-9
Abramov, 1998, q-hypergeometric solutions of q-difference equations, Discrete Math., 180, 3, 10.1016/S0012-365X(97)00106-4
Abramov, 2002, Rational normal forms and minimal decompositions of hypergeometric terms, J. Symbolic Comput., 33, 521, 10.1006/jsco.2002.0522
Abramov, 2002, On the structure of multivariate hypergeometric terms, Adv. Appl. Math., 29, 386, 10.1016/S0196-8858(02)00022-2
Böing, 1999, Algorithms for q-hypergeometric summation in computer algebra, J. Symbolic Comput., 28, 777, 10.1006/jsco.1998.0339
Cohn, 1965
Gel’fand, 1992, General hypergeometric systems of equations and series of hypergeometric type, Uspekhi Mat. Nauk, 47, 3
Graham, 1994
Hou, 2004, k-Free recurrences of double hypergeometric terms, Adv. Appl. Math., 32, 468, 10.1016/S0196-8858(03)00056-3
Koornwinder, 1993, On Zeilberger’s algorithm and its q-analogue, J. Comput. Appl. Math., 48, 91, 10.1016/0377-0427(93)90317-5
Ore, 1930, Sur la forme des fonctions hypergéométriques de plusieurs variables, J. Math. Pures Appl., 9, 311
Paule, 1997, A Mathematica q-analogue of Zeilberger’s algorithm based on an algebraically motivated approach to q-hypergeometric telescoping, vol. 14, 179
Petkovšek, 1996, A=B, 10.1201/9781439864500
Sato, 1990, Theory of prehomogeneous vector spaces (algebraic part), Nagoya Math. J., 120, 1, 10.1017/S0027763000003214
Wilf, 1992, An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities, Invent. Math., 108, 575, 10.1007/BF02100618
Zeilberger, 1991, The method of creative telescoping, J. Symbolic Comput., 11, 195, 10.1016/S0747-7171(08)80044-2