Applicability of Semiconductor Methane Sensors for Measuring Methane Emission from the Surface of a Water Body
Tóm tắt
The applicability of semiconductor methane sensors designed for detection of explosive concentrations of gases in rooms to the study of background methane contents in the atmosphere and its emissions from the surface of a water body is studied. An experimental prototype of the methane sensor is designed. To increase the accuracy of determining the methane content in air, the calibration procedure is suggested where the ambient humidity, temperature, and pressure are taken into account. Laboratory and field experiments show that TGS sensors are capable of detecting variations in the methane contents from 0.1 ppm and higher and can be mounted in floating chambers used to determine methane emissions from the water surface. The experimental setup is described; the results of calibration and selection of the best parametric model are presented. Recommendations for further development of the device are given.
Tài liệu tham khảo
D. R. Feldman, W. D. Collins, S. C. Biraud, M. D. Risser, D. D. Turner, P. J. Gero, and M. S. Torn, “Observationally derived rise in methane surface forcing mediated by water vapour trends,” Nat. Geosci. 11 (4), 238–243 (2018).
E. H. Stanley, N. J. Casson, S. T. Christel, J. T. Crawford, L. C. Loken, and S. K. Oliver, “The ecology of methane in streams and rivers: Patterns, controls, and global significance,” Ecol. Monogr. 86 (2), 146–171 (2016).
D. Bastviken, L. J. Tranvik, J. A. Downing, P. M. Crill, and A. Enrich-Prast, “Freshwater methane emissions offset the continental carbon sink,” Science 331 (6013), 50 (2011).
K. M. Walter, S. A. Zimov, J. P. Chanton, D. Verbyla, and F. S. Chapin, “Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming,” Nature 443 (7107), 71–75 (2006).
B. Deemer, A. Harrison, S. Li, J. Beaulieu, and T. Delsontro, “Greenhouse gas emissions from reservoir water surfaces: A new global synthesis,” BioScience 66 (11), 949–964 (2016).
H.-S. Kim, S. Maksyutov, M. Glagolev, T. Machida, P. Patra, K. Sudo, and G. Inoue, “Evaluation of methane emissions from West Siberian wetlands based on inverse modeling,” Environ. Res. Lett. 6 (3), 035201 (2011). https://doi.org/10.1088/1748-9326/6/3/035201
V. Yu. Polishchuk and Yu. M. Polishchuk, “Simulation of methane reserves in thermokarst lakes based on geosimulation approach and satellite images,” in Proc. of VIII All-Russian Scientific Conference “Information Technologies and Systems” (Khanty-Mansiisk, 2020), pp. 16–21.
V. M. Stepanenko, M. G. Grechushnikova, and I. A. Repina, “Numerical simulation if methane emission froma water reservoir,” Fundament. Prikl. Klimatol. 2, 76-99 (2020).
A. Lorke, P. Bodmer, C. Noss, Z. Alshboul, M. Koschorreck, C. Somlai-Haase, D. Bastviken, S. Flury, D. F. McGinnis, A. Maeck, D. Muller, and K. Premke, “Technical note: Drifting versus anchored flux chambers for measuring greenhouse gas emissions from running waters,” Biogeosci 12, 7013–7024 (2015).
D. Bastviken, J. Nygren, J. Schenk, R. P. Massana, and N. T. Duc, “Technical note: Facilitating the use of low-cost methane (CH4) sensors in flux chambers—calibration, data processing, and an open-source make-it-yourself logger,” Biogeoscie. 17, 659–667 (2020).
M. Aubinet, T. Vesala, and D. Papale, Eddy Covariance: A Practical Guide to Measurement and Data Analysis (Springer Science & Business Media, London, New York, 2012).
G. Burba, Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications: A Field Book on Measuring Ecosystem Gas Exchange and Areal Emission Rates (LI-COR Biosciences, Lincoln, USA, 2013).
T. Foken, Micrometeorology (Springer, Heidelberg, 2017).
M. Rantakari, J. J. Heiskanen, I. Mammarella, T. Tulonen, J. Linnaluoma, P. Kankaala, and A. Ojala, “Different apparent gas exchange coefficients for CO2 and CH4: Comparing a brown-water and a clear-water lake in the boreal zone during the whole growing season,” Environ. Sci. Technol. 49 (19), 11 388–11 394 (2015).
K.-M. Erkkila, A. Ojala, D. Bastviken, T. Biermann, J. J. Heiskanen, A. Lindroth, O. Peltola, M. Rantakari, T. Vesala, and I. Mammarella, “Methane and carbon dioxide fluxes over a lake: Comparison between eddy covariance, floating chambers and boundary layer method,” Biogeosci 15, 429–445 (2018).
W. Eugster and G. W. Kling, “Performance of a low-cost methane sensor for ambient concentration measurements in preliminary studies,” Atmos. Meas. Tech. 5 (8), 1925–1934 (2012).
S. N. Riddick, D. L. Mauzerall, M. Celia, G. Allen, J. Pitt, M. Kang, and J. T. Riddick, “The calibration and deployment of a low-cost methane sensor,” Atmos. Environ. 230, 117440 (2020).
World Meteorological Organization Guide to Meteorological Instruments and Methods of Observation. No. 8 (World Meteorological Organization, Genewa, 2017).
M. G. Grechushnikova, D. D. Badyukov, A. C. Savvichev, and B. C. Kazantsev, “Seasonal and spatial variations in the methane content in the Mozhaisk valley-type reservoir in summer,” Meteorol. Gidrol., No. 11, 67–78 (2017).
M. G. Grechushnikova, I. A. Repina, V. M. Stepanenko, B. C. Kazantsev, A. Yu. Artamonov, and B. A. Lomov, “Methane emission from the surface of the Mozhaisk valley-type reservoir,” Geogr. Nat. Res. 40 (3), 247–255 (2019).
S. Waldo, B. R. Deemer, L. S. Bair, and J. J. Beaulieu, “Greenhouse gas emissions from an arid-zone reservoir and their environmental policy significance: Results from existing global models and an exploratory dataset,” Environ. Sci. Policy 120, 53–62 (2021).