Applicability evaluation of ERA5 wind and wave reanalysis data in the South China Sea
Tóm tắt
Từ khóa
Tài liệu tham khảo
Agarwal A, Venugopal V, Harrison G P. 2013. The assessment of extreme wave analysis methods applied to potential marine energy sites using numerical model data. Renewable and Sustainable Energy Reviews, 27: 244–257, https://doi.org/10.1016/j.rser.2013.06.049.
Amiri A, Panahi R, Radfar S. 2016. Parametric study of two-body floating-point wave absorber. Journal of Marine Science and Application, 15(1): 41–49, https://doi.org/10.1007/s11804-016-1342-1.
Babanin A V. 2006. On a wave-induced turbulence and a wave-mixed upper ocean layer. Geophysical Research Letters, 33(20): L20605, https://doi.org/10.1029/2006GL027308.
Babanin A V, Ganopolski A, Phillips W R C. 2009. Wave-induced upper-ocean mixing in a climate model of intermediate complexity. Ocean Modelling, 29(3): 189–197, https://doi.org/10.1016/j.ocemod.2009.04.003.
Behzad H, Panahi R. 2017. Optimization of bottom-hinged flap-type wave energy converter for a specific wave rose. Journal of Marine Science and Application, 16(2): 159–165, https://doi.org/10.1007/s11804-017-1405-y.
Bromirski P D, Cayan D R, Flick R E. 2005. Wave spectral energy variability in the northeast Pacific. Journal of Geophysical Research: Oceans, 110(C3): C03005, https://doi.org/10.1029/2004JC002398.
Bromwich D H, Wang S H. 2008. A review of the temporal and spatial variability of Arctic and Antarctic atmospheric circulation based upon ERA-40. Dynamics of Atmospheres and Oceans, 44(3–4): 213–243, https://doi.org/10.1016/j.dynatmoce.2007.09.001.
Bruno M F, Molfetta M G, Totaro V et al. 2020. Performance assessment of ERA5 wave data in a swell dominated region. Journal of Marine Science and Engineering, 8(3): 214, https://doi.org/10.3390/jmse8030214.
Caires S, Sterl A, Bidlot J R et al. 2004. Intercomparison of different wind-wave reanalyses. Journal of Climate, 17(10): 1893–1913, https://doi.org/10.1175/1520-0442(2004)017<1893:iodwr>2.0.co;2.
Caires S, Sterl A. 2005. A new nonparametric method to correct model data: application to significant wave height from the ERA-40 re-analysis. Journal of Atmospheric and Oceanic Technology, 22(4): 443–459, https://doi.org/10.1175/jtech1707.1.
Campos R M, Soares C G. 2016. Comparison of HIPOCAS and ERA wind and wave reanalyses in the North Atlantic Ocean. Ocean Engineering, 112: 320–334, https://doi.org/10.1016/j.oceaneng.2015.12.028.
Cavaleri L, Bertotti L, Torrisi L et al. 2012. Rogue waves in crossing seas: the Louis Majesty accident. Journal of Geophysical Research: Oceans, 117(C11), https://doi.org/10.1029/2012JC007923.
Fan Y L, Ginis I, Hara T. 2009. The effect of wind-wave-current interaction on air-sea momentum fluxes and ocean response in tropical cyclones. Journal of Physical Oceanography, 39(4): 1019–1034, https://doi.org/10.1175/2008JPO4066.1.
Gemmrich J, Thomas B, Bouchard R. 2011. Observational changes and trends in northeast Pacific wave records. Geophysical Research Letters, 38(22): L22601, https://doi.org/10.1029/2011GL049518.
Gulev S K, Grigorieva V. 2004. Last century changes in ocean wind wave height from global visual wave data. Geophysical Research Letters, 31(24): L24302, https://doi.org/10.1029/2004GL021040.
Gulev S K, Grigorieva V. 2006. Variability of the winter wind waves and swell in the North Atlantic and North Pacific as revealed by the voluntary observing ship data. Journal of Climate, 19(21): 5667–5685, https://doi.org/10.1175/JCLI3936.1.
Gulev S K, Grigorieva V, Sterl A et al. 2003. Assessment of the reliability of wave observations from voluntary observing ships: insights from the validation of a global wind wave climatology based on voluntary observing ship data. Journal of Geophysical Research: Oceans, 108(C7): 3236, https://doi.org/10.1029/2002JC001437.
Hemer M A, Church J A, Hunter J R. 2010. Variability and trends in the directional wave climate of the Southern Hemisphere. International Journal of Climatology, 30(4): 475–491, https://doi.org/10.1002/joc.1900.
Hersbach H, Bell B, Berrisford P et al. 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730): 1999–2049, https://doi.org/10.1002/qj.3803.
Kumar V S, Naseef T M. 2015. Performance of ERA-interim wave data in the nearshore waters around India. Journal of Atmospheric and Oceanic Technology, 32(6): 1257–1269, https://doi.org/10.1175/JTECH-D-14-00153.1.
Le Traon P Y. 2013. From satellite altimetry to Argo and operational oceanography: three revolutions in oceanography. Ocean Science, 9(5): 901–915, https://doi.org/10.5194/os-9-901-2013.
Li X, Dong S. 2016. A preliminary study on the intensity of cold wave storm surges of Laizhou Bay. Journal of Ocean University of China, 15(6): 987–995, https://doi.org/10.1007/s11802-016-3053-2.
Liu G Q, Perrie W, Hughes C. 2017. Surface wave effects on the wind-power input to mixed layer near-inertial motions. Journal of Physical Oceanography, 47(5): 1077–1093, https://doi.org/10.1175/JPO-D-16-0198.1.
Menéndez M, Méndez F J, Losada I J et al. 2008. Variability of extreme wave heights in the northeast Pacific Ocean based on buoy measurements. Geophysical Research Letters, 35(22): L22607, https://doi.org/10.1029/2008GL035394.
Ministry of Natural Resources of the People’s Republic of China. 2020. Offshore forecast areas zoning. HY/T 0292–2020. Beijing: Standards Press of China. (in Chinese)
Mirab H, Fathi R, Jahangiri V et al. 2015. Energy harvesting from sea waves with consideration of airy and JONSWAP theory and optimization of energy harvester parameters. Journal of Marine Science and Application, 14(4): 440–449, https://doi.org/10.1007/s11804-015-1327-5.
Mohapatra S. 2016. The interaction of oblique flexural gravity waves with a small bottom deformation on a porous ocean-bed: green’s function approach. Journal of Marine Science and Application, 15(2): 112–122, https://doi.org/10.1007/s11804-016-1353-y.
Monioudi I N, Velegrakis A F, Chatzipavlis A E et al. 2017. Assessment of island beach erosion due to sea level rise: the case of the Aegean archipelago (Eastern Mediterranean). Natural Hazards and Earth System Sciences, 17(3): 449–466, https://doi.org/10.5194/nhess-17-449-2017.
Niu Q R, Feng Y Q. 2021. Relationships between the typhoon-induced wind and waves in the northern South China Sea. Geophysical Research Letters, 48(8): e2020GL091665, https://doi.org/10.1029/2020GL091665.
Patra A, Min S K, Seong M G. 2020. Climate variability impacts on global extreme wave heights: seasonal assessment using satellite data and ERA5 reanalysis. Journal of Geophysical Research: Oceans, 125(12): e2020JC016754, https://doi.org/10.1029/2020JC016754.
Postacchini M, Soldini L, Lorenzoni C et al. 2017. Medium-term dynamics of a middle Adriatic barred beach. Ocean Science, 13(5): 719–734, https://doi.org/10.5194/os-13-719-2017.
Rascle N, Ardhuin F. 2013. A global wave parameter database for geophysical applications. Part 2: model validation with improved source term parameterization. Ocean Modelling, 70: 174–188, https://doi.org/10.1016/j.ocemod.2012.12.001.
Saha S, Moorthi S, Pan H L et al. 2010. The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society, 91(8): 1015–1058, https://doi.org/10.1175/2010BAMS3001.1.
Semedo A, Sušelj K, Rutgersson A et al. 2011. A global view on the wind sea and swell climate and variability from ERA-40. Journal of Climate, 24(5): 1461–1479, https://doi.org/10.1175/2010JCLI3718.1.
Sharp E, Dodds P, Barrett M et al. 2015. Evaluating the accuracy of CFSR reanalysis hourly wind speed forecasts for the UK, using in situ measurements and geographical information. Renewable Energy, 77: 527–538, https://doi.org/10.1016/j.renene.2014.12.025.
Shi H Y, Cao X F, Li Q J et al. 2021. Evaluating the accuracy of ERA5 wave reanalysis in the water around China. Journal of Ocean University of China, 20(1): 1–9, https://doi.org/10.1007/s11802-021-4496-7.
Stefanakos C. 2021. Global wind and wave climate based on two reanalysis databases: ECMWF ERA5 and NCEP CFSR. Journal of Marine Science and Engineering, 9(9): 990, https://doi.org/10.3390/jmse9090990.
Stopa J E, Cheung K F. 2014a. Intercomparison of wind and wave data from the ECMWF reanalysis interim and the NCEP climate forecast system reanalysis. Ocean Modelling, 75: 65–83, https://doi.org/10.1016/j.ocemod.2013.12.006.
Stopa J E, Cheung K F. 2014b. Periodicity and patterns of ocean wind and wave climate. Journal of Geophysical Research: Oceans, 119(8): 5563–5584, https://doi.org/10.1002/2013JC009729.
Thomas B R, Kent E C, Swail V R et al. 2008. Trends in ship wind speeds adjusted for observation method and height. International Journal of Climatology, 28(6): 747–763, https://doi.org/10.1002/joc.1570.
Vanem E, Walker S E. 2013. Identifying trends in the ocean wave climate by time series analyses of significant wave heightdata. Ocean Engineering, 61: 148–160, https://doi.org/10.1016/j.oceaneng.2012.12.042.
Wan Y, Fan C Q, Dai Y S et al. 2018. Assessment of the joint development potential of wave and wind energy in the South China Sea. Energies, 11(2): 398, https://doi.org/10.3390/en11020398.
Wang X L, Swail V R. 2006. Climate change signal and uncertainty in projections of ocean wave heights. Climate Dynamics, 26(2): 109–126, https://doi.org/10.1007/s00382-005-0080-x.
Yan Z D, Liang B C, Wu G X et al. 2020. Ultra-long return level estimation of extreme wind speed based on the deductive method. Ocean Engineering, 197: 106900, https://doi.org/10.1016/j.oceaneng.2019.106900.
Young I R, Zieger S, Babanin A V. 2011. Global trends in wind speed and wave height. Science, 332(6028): 451–455, https://doi.org/10.1126/science.1197219.
Zhai F G, Wu W F, Gu Y Z et al. 2021. Dynamics of the seasonal wave height variability in the South China Sea. International Journal of Climatology, 41(2): 934–951, https://doi.org/10.1002/joc.6707.
Zheng C W, Li C Y. 2017. Propagation characteristic and intraseasonal oscillation of the swell energy of the Indian Ocean. Applied Energy, 197: 342–353, https://doi.org/10.1016/j.apenergy.2017.04.052.
Zheng C W, Pan J, Li J X. 2013. Assessing the China Sea wind energy and wave energy resources from 1988 to 2009. Ocean Engineering, 65: 39–48, https://doi.org/10.1016/j.oceaneng.2013.03.006.