Applicability Assessment of the 1998–2018 CLDAS Multi-Source Precipitation Fusion Dataset over China

Springer Science and Business Media LLC - Tập 34 - Trang 879-892 - 2020
Shuai Sun1, Chunxiang Shi1, Yang Pan1, Lei Bai1, Bin Xu1, Tao Zhang1, Shuai Han1, Lipeng Jiang1
1National Meteorological Information Center, China Meteorological Administration, Beijing, China

Tóm tắt

Traditional hourly rain gauges and automatic weather stations rarely measure solid precipitation, except for those stations with weighing-type precipitation sensors. Microwave remote sensing has only a low ability to retrieve solid precipitation. In addition, there are no long-term, high-quality precipitation data in China that can be used to drive land surface models. To address these issues, in the China Meteorological Administration (CMA) Land Data Assimilation System (CLDAS), we blended the Climate Prediction Center (CPC) morphing technique (CMORPH) and Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA2) precipitation datasets with observed temperature and precipitation data on various temporal scales using multigrid variational analysis and temporal downscaling to produce a multi-source precipitation fusion dataset for China (CLDAS-Prcp). This dataset covers all of China at a resolution of 6.25 km at hourly intervals from 1998 to 2018. We performed dependent and independent evaluations of the CLDAS-Prcp dataset from the perspectives of seasonal total precipitation and land surface model simulation. Our results show that the CLDAS-Prcp dataset represents reasonably the spatial distribution of precipitation in China. The dependent evaluation indicates that the CLDAS-Prcp performs better than the MERRA2 precipitation, CMORPH precipitation, Global Land Data Assimilation System version 2 (GLDAS-V2.1) precipitation, and CLDAS-V2.0 winter precipitation, as compared to the meteorological observational precipitation. The independent evaluation indicates that the CLDAS-Prcp dataset performs better than the Global Precipitation Measurement (GPM) precipitation dataset and is similar to the CLDAS-V2.0 summer precipitation dataset based on the hydrological observational precipitation. The simulated soil moisture content driven by CLDAS-Prcp is slightly better than that driven by the CLDAS-V2.0 precipitation, whereas the snow depth simulation driven by CLDAS-Prcp is much better than that driven by the CLDAS-V2.0 precipitation. This is because the CLDAS-Prcp data have included solid precipitation. Overall, the CLDAS-Prcp dataset can meet the needs of land surface and hydrological modeling studies.

Tài liệu tham khảo

Anjum, M. N., Y. J. Ding, D. H. Shangguan, et al., 2018: Performance evaluation of latest integrated multi-satellite retrievals for Global Precipitation Measurement (IMERG) over the northern highlands of Pakistan. Atmos. Res., 205, 134–146, doi: https://doi.org/10.1016/j.atmosres.2018.02.010. Beck, H. E., A. I. J. M. van Dijk, V. Levizzani, et al., 2017: MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci., 21, 589–615, doi: https://doi.org/10.5194/hess-21-589-2017. Chahine, M. T., 1992: The hydrological cycle and its influence on climate. Nature, 359, 373–380, doi: https://doi.org/10.1038/359373a0. Chen, M. Y., W. Shi, P. P. Xie, et al., 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res. Atmos., 113, D04110, doi: https://doi.org/10.1029/2007JD009132. Dai, Y. J., X. B. Zeng, R. E. Dickinson, et al., 2003: The Common Land Model. Bull. Amer. Meteor. Soc., 84, 1013–1023, doi: https://doi.org/10.1175/BAMS-84-8-1013. Han, S., C. X. Shi, L. P. Jiang, et al., 2017: The simulation and evaluation of soil moisture based on CLDAS. J. Appl. Meteor. Sci., 28, 369–378, doi: https://doi.org/10.11898/1001-7313.20170310. (in Chinese) Han, S., C. X. Shi, B. Xu, et al., 2019: Development and evaluation of hourly and kilometer resolution retrospective and real-time surface meteorological blended forcing dataset (SMBFD) in China. J. Meteor. Res., 33, 1168–1181, doi: https://doi.org/10.1007/s13351-019-9042-9. Hou, A. Y., R. K. Kakar, S. Neeck, et al., 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701–722, doi: https://doi.org/10.1175/BAMS-D-13-00164.1. Huffman, G. J., D. T. Bolvin, E. J. Nelkin, et al., 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasiglobal, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 38–55, doi: https://doi.org/10.1175/JHM560.1. Jordan, R., 1991: A One-Dimensional Temperature Model for a Snow Cover. Technical Documentation for SNTHERM.89, CRREL-SR-91-16, Cold Regions Research and Engineering Laboratory, Hanover, NH, 64 pp. Joyce, R. J., J. E. Janowiak, P. A. Arkin, et al., 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487–503, doi: https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2. Li, C. X., T. B. Zhao, C. X. Shi, et al., 2020: Evaluation of daily precipitation product in China from the CMA Global Atmospheric Interim Reanalysis. J. Meteor. Res., 34, 117–136, doi: https://doi.org/10.1007/s13351-020-8196-9. Li, L., X. B. Fan, W. Cui, et al., 2015: Comparative analysis of precipitation between weighing gauge and manual gauge. J Appl. Meteor. Sci., 26, 688–694, doi: https://doi.org/10.11898/1001-7313.20150605. (in Chinese) Li, X. F., Z. J. Zhou, Z. P. Li, et al., 2017: Quality assessment of China merged precipitation product using hydrological data in Jiangxi Province. Meteor. Mon., 43, 1534–1546, doi: https://doi.org/10.7519/j.issn.1000-0526.2017.12.009. (in Chinese) Liu, J. G., C. X. Shi, S. Sun, et al., 2019: Improving land surface hydrological simulations in China using CLDAS meteorological forcing data. J. Meteor. Res., 33, 1194–1206, doi: https://doi.org/10.1007/s13351-019-9067-0. Miao, Y., and A. H. Wang, 2020: Evaluation of routed-runoff from land surface models and reanalyses using observed stream-flow in Chinese river basins. J. Meteor. Res., 34, 73–87, doi: https://doi.org/10.1007/s13351-020-9120-z. Niu, G.-Y., Z.-L. Yang, K. E. Mitchell, et al., 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Atmos., 116, D12109, doi: https://doi.org/10.1029/2010JD015139. Oleson, K. W., Y. J. Dai, G. Bonan, et al., 2004: Technical Description of the Community Land Model (CLM). No. NCAR/TN-461+STR, UCAR, Boulder, CO, 173 pp, doi: https://doi.org/10.5065/D6N877R0. Pan, Y., Y. Shen, J. J. Yu, et al., 2012: Analysis of the combined gauge-satellite hourly precipitation over China based on the OI technique. Acta Meteor. Sinica, 70, 1381–1389, doi: https://doi.org/10.11676/qxxb2012.116. (in Chinese) Pan, Y., Y. Shen, J. J. Yu, et al., 2015: An experiment of high-resolution gauge-radar-satellite combined precipitation retrieval based on the Bayesian merging method. Acta Meteor. Sinica, 73, 177–186, doi: https://doi.org/10.11676/qxxb2015.010. (in Chinese) Reichle, R. H., Q. Liu, R. D. Koster, et al., 2017: Land surface precipitation in MERRA-2. J. Climate, 30, 1643–1664, doi: https://doi.org/10.1175/JCLI-D-16-0570.1. Ren, G. Y., Y. J. Zhan, Y. Y. Ren, et al., 2015: Spatial and temporal patterns of precipitation variability over mainland China: I: Climatology. Adv. Water Sci., 26, 299–310, doi: https://doi.org/10.14042/j.cnki.32.1309.2015.03.001. (in Chinese) Ren, Z. H., M. N. Feng, H. Z. Zhang, et al., 2007: The difference and relativity between rainfall by automatic recording and manual observation. J. Appl. Meteor. Sci., 18, 358–364, doi: https://doi.org/10.3969/j.issn.1001-7313.2007.03.012. (in Chinese) Rodell, M., P. R. Houser, U. Jambor, et al., 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381–394, doi: https://doi.org/10.1175/BAMS-85-3-381. Shi, C. X., Z. H. Xie, H. Qian, et al., 2011: China land soil moisture EnKF data assimilation based on satellite remote sensing data. Sci. China Earth Sci., 54, 1430–1440, doi: https://doi.org/10.1007/s11430-010-4160-3. Shi, C. X., L. P. Jiang, T. Zhang, et al., 2014: Status and plans of CMA Land Data Assimilation System (CLDAS) Project. Geophysical Research Abstracts, 16, EGU2014–5671. Sun, S., C. X. Shi, X. Liang, et al., 2017: Assessment of ground temperature simulation in China by different land surface models based on station observations. J. Appl. Meteor. Sci., 28, 737–749, doi: https://doi.org/10.11898/1001-7313.20170609. (in Chinese) Trenberth, K. E., and J. G. Olson, 1988: An evaluation and inter-comparison of global analyses from the National Meteorological Center and the European Centre for Medium Range Weather Forecasts. Bull. Amer. Meteor. Soc., 69, 1047–1057, doi: https://doi.org/10.1175/1520-0477(1988)069<1047:AEAIOG>2.0.CO;2. Ushio, T., K. Sasashige, T. Kubota, et al., 2009: A Kalman filter approach to the Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data. J. Meteor. Soc. Japan, 87A, 137–151, doi: https://doi.org/10.2151/jmsj.87A.137. Wang, Z. L., R. D. Zhong, C. G. Lai, et al., 2017: Evaluation of TRMM 3B42-V7 satellite-based precipitation data product in the Pearl River basin, China: Dongjiang River and Beijiang River basin as examples. Adv. Water Sci., 28, 174–182, doi: https://doi.org/10.14042/j.cnki.32.1309.2017.02.002. (in Chinese) Xie, P. P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558, doi: https://doi.org/10.1175/1520-0477(1997)078.<2539:GPAYMA>2.0.CO;2 Xie, Y., S. Koch, J. McGinley, et al., 2011: A space-time multiscale analysis system: A sequential variational analysis approach. Mon. Wea. Rev., 139, 1224–1240, doi: https://doi.org/10.1175/2010MWR3338.1. Xu, B., P. P. Xie, M. Xu, et al., 2015: A validation of passive microwave rain-rate retrievals from the Chinese FengYun-3B satellite. J. Hydrometeor., 16, 1886–1905, doi: https://doi.org/10.1175/JHM-D-14-0143.1. Yang, Z.-L., G.-Y. Niu, K. E. Mitchell, et al., 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res. Atmos., 116, D12110, doi: https://doi.org/10.1029/2010JD015140. Zhang, T., C. S. Miao, and X. Wang, 2014: Comparison tests of the integration effect of surface temperature by LAPS and STMAS. Plateau Meteor., 33, 743–752. (in Chinese) Zhao, F., A. Y. Xiong, X. Y. Zhang, et al., 2017: Technical characteristics of the architecture design of China Integrated Meteorological Information Sharing System. J. Appl. Meteor. Sci., 28, 750–758, doi: https://doi.org/10.11898/1001-7313.20170610. (in Chinese)