Các tế bào phloem của táo chứa một số mRNA được vận chuyển qua khoảng cách dài

Springer Science and Business Media LLC - Tập 6 - Trang 635-642 - 2010
Azumi Kanehira1, Kaori Yamada1, Tomomi Iwaya1, Ryo Tsuwamoto1, Atsushi Kasai1, Mikio Nakazono2, Takeo Harada1
1Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
2Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan

Tóm tắt

Táo (Malus × domestica Borkh.), giống như nhiều loại cây ăn trái khác, không thể nhân giống vô tính từ hạt mà được nhân giống bằng cách ghép vào gốc cây. Gốc ghép ảnh hưởng đến sự phát triển của chồi ghép, nhưng chưa rõ lý do. Gần đây, một số mRNA đã được chứng minh là lưu thông trong mạch phloem. Để làm rõ liệu RNA có được vận chuyển qua khoảng cách dài qua mối ghép của cây táo hay không, chúng tôi đã phân tích cDNA thu được từ các tế bào phloem của chồi bằng cách vi phẫu cắt bằng laser. Chúng tôi đã phát hiện nhiều mRNA đã được báo cáo là RNA được vận chuyển qua phloem ở các cây khác. Một trong số đó, MpSLR/IAA14, được xác định là được vận chuyển qua khoảng cách dài qua mối ghép ở cây táo đã ghép. Những kết quả này gợi ý rằng có thể có một hệ thống vận chuyển RNA phloem tham gia vào tác động của gốc ghép đối với sự phát triển của chồi ghép và năng suất cây trồng.

Từ khóa

#táo #phloem #mRNA #gốc ghép #sự phát triển của chồi ghép

Tài liệu tham khảo

Aki T, Shigyo M, Nakano R, Yoneyama T, Yanagisawa S (2008) Nano scale proteomics revealed the presence of regulatory proteins including three FT-like proteins in phloem and xylem saps from rice. Plant Cell Physiol 49:767–790 Aoki K, Suzui N, Fujimaki S, Dohmae N, Yonekura-Sakakibara K, Fujiwara T, Hayashi H, Yamaya T, Sakakibara H (2005) Destination-selective long-distance movement of phloem proteins. Plant Cell 17:1801–1814 Banerjee AK, Chatterjee M, Yu Y, Suh S-G, Miller WA, Hannapel DJ (2006) Dynamics of a mobile RNA of potato involved in a long-distance signalling pathway. Plant Cell 18:3443–3457 Barnes A, Bale J, Constantinidou C, Ashton P, Jones A, Pritchard J (2004) Determining protein identity from sieve element sap in Ricinus communis L. by quadrupole time of flight (Q-TOF) mass spectrometry. J Exp Bot 55:1473–1481 Benitez-Alfonso Y, Cilia M, Roman AS, Thomas C, Maule A, Hearn S, Jackson D (2009) Control of Arabidopsis meristem development by thioredoxin-dependent regulation of intercellular transport. PNAS 106:3615–3620 Buhtz A, Springer F, Chappell L, Baulcombe DC, Kehr J (2008) Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J 53:739–749 Carrington JC, Kasschau KD, Mahajan SK, Schaad MC (1996) Cell-to cell and long-distance transport of viruses in plants. Plant Cell 8:1669–1681 Cheng W-S, Endo A, Zhou L, Penney J, Chen H-C, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signalling and abscisic acid biosynthesis and functions. Plant Cell 14:2723–2743 Deeken R, Ache P, Kajahn I, Klinkerberg J, Bringmann G, Hedrich R (2008) Identification of Arabidopsis thaliana phloem RNAs provides a search criterion for phloem-based transcripts hidden in complex datasets of microarray experiments. Plant J 55:746–759 Doering-Saad C, Newbury HJ, Bale JS, Pritchard J (2002) Use of aphid stylectomy and RT-PCR for the detection of transporter mRNAs in sieve elements. J Exp Bot 53:631–637 Fukaki H, Tameda S, Masuda H, Tasaka M (2002) Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J 29:153–168 Giavalisco P, Kapitza K, Kolasa A, Buhtz A, Kehr J (2006) Towards the proteome of Brassica napus phloem sap. Proteomics 6:896–909 Gómez G, Torres H, Pallás V (2005) Identification of translocatable RNA-binding phloem proteins from melon, potential components of the long-distance RNA transport system. Plant J 41:107–116 Ham BK, Brandom JL, Xoconostle-Cázares B, Ringgold V, Lough TJ, Lucas WJ (2009) A polypyrimidine tract binding protein, pumpkin RBP50, forms the basis of a phloem-mobile ribonucleoprotein complex. Plant Cell 21:197–215 Haywood V, Yu TS, Huang NC, Lucas WJ (2005) Phloem long-distance trafficking of GIBBERELLIC ACID-INSENSITIVE RNA regulates leaf development. Plant J 42:49–68 Huang N-H, Yu T-S (2009) The sequences of Arabidopsis GA-INSENSITIVE RNA constitute the motifs that are necessary and sufficient for RNA long-distance trafficking. Plant J 59:921–929 Ishiwatari Y, Nemoto K, Fujiwara T, Chino M, Hayashi H (2000) In situ hybridization study of the rice phloem thioredoxin h mRNA accumulation—possible involvement in the differentiation of vascular tissues. Physiol Plant 109:90–96 Jensen PJ, Rytter J, Detwiler EA, Travis JW, McNellis TW (2003) Rootstock effects on gene expression patterns in apple tree scions. Plant Mol Biol 493:493–511 Jones OP (1971) Effects of rootstocks and interstocks on the xylem sap concentration in apple trees: effect on nitrogen, phosphorus and potassium content. Ann Bot 35:825–836 Kamboj JS, Blake PS, Quinlan JD, Baker DA (1999) Identification and quantitation by GC-MS of zeatin and zeatin rioside in xylem sap from rootstock and scion of grafted apple trees. Plant Growth Reg 28:199–205 Kehr J, Buhtz A (2008) Long-distance transport and movement of RNA through the phloem. J Exp Bot 59:85–92 Kim M, Canio W, Kessler S, Sinha N (2001) Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato. Science 293:287–289 Korban SS, Chen H (1992) Apple. In: Hammershlag FA, Litz RL (eds) Biotechnology of perennial fruit crops. CAB Intl. Wallingford, UK, pp 203–227 Kudo H, Harada T (2007) A graft-transmissible RNA from tomato rootstock changes leaf morphology of potato scion. HortScience 42:225–226 Kwon C, Neu C, Pajonk S, Yun HS, Lipka U, Humphry M, Bau S, Straus M, Kwaaitaal M, Rampelt H, Kasmi FE, Jürgens G, Parker J, Panstruga R, Lipka V, Schulze-Lefert P (2008) Co-option of a default secretory pathway for plant immune responses. Nature 451:835–840 Lin M-K, Lee YJ, Laugh TJ, Phinney BS, Lucas WJ (2009) Analysis of the pumpkin phloem proteome provides insights into angiosperm sieve tube function. Mol Cell Proteomics 8:343–356 Lin S-I, Chiang S-F, Lin W-Y, Chen J-W, Tseng C-Y, Wu P-C, Chiou T-J (2008) Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiol 147:732–746 Mir G, Domĕnech J, Huguet G, Guo WJ, Goldsbrough P, Atrian S, Molinas M (2004) A plant type 2 metallothionein (MT) from cork tissue responds to oxidative stress. J Exp Bot 55:2483–2493 Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497 Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Nain B, Ross GS, Snowden KC, Souleyre EJF, Walton EF, Yauk YK (2006) Analyses of expressed sequence tags from apple. Plant Physiol 141:147–166 Omid A, Keilin T, Glass A, Leshkowitz D, Wolf S (2007) Characterization of phloem-sap transcription profile in melon plants. J Exp Bot 58:3645–3656 Palukaitis P (1987) Potato spindle tuber viroid investigation of the long-distance, intra-plant transport route. Virology 158:239–241 Pant BD, Buhtz A, Kehr J, Scheible W-R (2008) MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J 53:731–738 Pommerrenig B, Barth I, Niedermeier M, Kopp S, Schmid J (2006) Common plantain. A collection of expressed sequence tags from vascular tissue and a simple and efficient transformation method. Plant Physiol 142:1427–1441 Ruiz-Medrano R, Xoconostle-Cázares B, Lucas WJ (1999) Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants. Development 126:4405–4419 Soumelidou K, Morris DA, Battey NH, Barnett JR, John P (1994) Auxin transport capacity in relation to the dwarfing effect of apple rootstocks. J Hort Sci 69:719–725 Taoka K, Ham BK, Xoconostle-Cázares B, Rojas MR, Lucas WJ (2007) Reciprocal phosphorylation and glucosylation recognition motifs control NCAPP1 interaction with pumpkin phloem proteins and their cell-to-cell movement. Plant Cell 19:1866–1884 Traverso JA, Vignols F, Cazalis R, Pulido A, Sahrawy M, Cejudo FJ, Meyer Y, Chueca A (2007) PsTRXh1 and PsTRXh2 are both pea h-type thioredoxins with antagonistic behavior in redox imbalances. Plant Physiol 143:300–311 van Bel AJE, Ehlers K, Knoblauch M (2002) Sieve elements caught in the act. Trends Plant Sci 7:126–132 Vilaine F, Palauqui JC, Amselem J, Kusiak C, Lemoine R, Dinant S (2003) Towards deciphering phloem: a transcriptome analysis of the phloem of Apium graveolens. Plant J 36:67–81 Walz C, Giavalisco P, Schad M, Juenger M, Klose J, Kehr J (2004) Proteomics of cucurbit phloem exudate reveals a network of defense proteins. Phytochemistry 65:1795–1804 Webster T (1994) Rootstock and interstock effects on deciduous fruit tree growth and cropping—a brief review. Compact Fruit Tree 27:5–16 Westwood MN (1993) Temperate-zone pomology. Physiology and culture, 3rd edn. Timber Press, Portland, OR, USA Xoconostle-Cázares B, Xiang Y, Ruiz-Medrano R, Wang HL, Monzer J, Yoo BC, McFarland KC, Franceschi VR, Lucas WJ (1999) Plant paralog to viral movement protein that potentiates transport of mRNA into the phloem. Science 283:94–98 Yoo BC, Kragler F, Varkonyi-Gasic E, Haywood V, Archer-Evans S, Lee YM, Lough TJ, Lucas WJ (2004) A systemic small RNA signaling system in plants. Plant Cell 16:1979–2000