Gen MdDMR6 Cột Của Táo Tăng Cường Sự Chịu Đựng Với Căng Thẳng Muối Ở Cây Giống Thuốc Lá Biến Gen Và Calli Táo

Xin Sun1,2, Cuiping Wen2,1, Jun Zhu1,2, Hongyi Dai1,2, Yugang Zhang1,2
1College of Horticultural, Qingdao Agricultural University, Qingdao, China
2Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao, China

Tóm tắt

Các nghiên cứu gần đây đã chỉ ra rằng gen MdDMR6 là một gen chính cho việc kiểm soát thói quen sinh trưởng cột. Tuy nhiên, chưa có báo cáo nghiên cứu nào về chức năng của gen MdDMR6. Trong nghiên cứu này, các mẫu cây chồi táo cột thể hiện khả năng chịu đựng tốt hơn so với các mẫu chồi táo tiêu chuẩn dưới căng thẳng muối. Sự biểu hiện của MdDMR6 được kích thích rõ ràng bởi căng thẳng muối. Tiếp theo, MdDMR6 đã được chuyển vào thuốc lá và calli táo thông qua phương pháp trung gian Agrobacterium. Phân tích chức năng cho thấy thuốc lá biến gen và calli táo thể hiện khả năng chịu muối và kiểu hình không nhạy cảm với ABA thông qua phân tích sinh lý và sinh hóa. Sự dư thừa MdDMR6 đã kích hoạt mức độ phiên mã của một số gen liên quan đến gen căng thẳng phụ thuộc ABA dưới điều kiện muối. Những kết quả này cho thấy MdDMR6 có thể tăng cường khả năng chịu đựng của cây đối với căng thẳng muối thông qua việc kích hoạt hoặc tương tác với các protein khác để gián tiếp kích hoạt các con đường phụ thuộc ABA.

Từ khóa

#MdDMR6 #tăng cường khả năng chịu đựng #muối #cây thuốc lá biến gen #calli táo #nghiên cứu sinh lý.

Tài liệu tham khảo

Ahmed I, Yadav D, Shukla P, Kirti PB (2018) Heterologous expression of Brassica juncea annexin, AnnBj2 confers salt tolerance and ABA insensitivity in transgenic tobacco seedlings. Funct Integr Genomic 18:569–579 Alexandersson E, Danielson JAH, Rade J, Moparthi VK, Fontes M, Kjellbom P, Johanson U (2010) Transcriptional regulation of aquaporins in accessions of Arabidopsis in response to drought stress. Plant J 61:650–660 An JP, Yao JF, Wang XN, You CX, Wang XF, Hao YJ (2017a) MdHY5 positively regulates cold tolerance via CBF-dependent and CBF-independent pathways in apple. J Plant Physiol 218:275–281 An JP, Liu X, Song LQ, You CX, Wang XF, Hao YJ (2017b) Apple RING finger E3 ubiquitin MdMIEL1 negatively regulates salt and oxidative stress tolerance. J Plant Biol 60:137–145 Ashraf M, Harris P (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16 Bai T, Zhu Y, Fernandez-Fernandez F, Keulemans J, Brown S, Xu K (2012) Fine genetic mapping of the Co locus controlling columnar growth habit in apple. Mol Genet Genomics 287:437–450 Baldi P, Wolters PJ, Komjanc M, Viola R, Velasco R, Salvi S (2013) Genetic and physical characterization of the locus controlling columnar habit in apple (Malus×domestic Borkh.). Mol Breeding 31:429–440 Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65:1241–1257 Cai G, Wang L, Liu Y, Pan J, Li D (2014) A maize mitogen activated protein kinase kinase, ZmMKK1, positively regulated the salt and drought tolerance in transgenic Arabidopsis. J Plant Physiol 171:1003–1016 Du C, Zhao P, Zhang H, Li N, Zheng L, Wang Y (2017) The Reaumuria trigyna transcription factor RtWRKY1 confers tolerance to salt stress in transgenic Arabidopsis. J Plant Pysiol 215:48–58 Hiscox JT, Isratelstam G (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. J Botany 57:1332–1334 Hollender CA, Dardick C (2014) Molecular basis of angiosperm tree architecture. New Phytol 6:541–556 Jacob HB, Herter FG, Leite GB, Raseira MDCB (2010) Breeding experiments of apple varieties with columnar growth and low chilling requirements. Acta Hortic 872:159–164 Kelsey DF, Brown SK (1992) ‘McIntosh Wijcik’: a columnar mutation of ‘McIntosh’ apple proving useful in physiology and breeding research. J Am Pomol Soc 46:83–87 Kim SA, Ahn SY, Yun HK (2016) Analysis of structure and expression of grapevine 2-osoglutarate genes in response to low temperature. Korean J Hortic Sci 2:46–54 Lapins KO (1976) Inheritance of compact growth type in apple. J Am Soc Hortic Sci 101:133–135 Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62:4731–4748 Li J, Li Y, Yin Z, Jiang J, Zhang M, Guo X, Ye Z, Zhao Y, Xiong H, Zhang Z, Shao Y, Jiang C, Zhang H, An G, Paek NC, Ali J, Li Z (2017) OsASE5 enhances drought tolerance through a stomatal closure pathway associated with ABA and H2O2 signaling in rice. J Plant Biol 15:183–196 Moriya S, Iwanami H, Kotoda N, Takahashi S, Yamamoto T, Abe K (2009) Development of a marker-assisted selection system for columnar growth habit in apple breeding. J Jpn Soc Hortic Sci 78:279–287 Moriya S, Okada K, Haji T, Yamamoto T, Abe K (2012) Fine mapping of Co, a gene controlling columnar growth habit located on apple (Malus×domestic Borkh). Plant Breed 131:641–647 Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Interaction between two cis-acting elements, AREB and DREB, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34:137–148 Okada K, Wada M, Moriya S, Katayose Y, Fujisawa H, Wu J, Kanamori H, Kurita K, Sasaki H, Fujii H, Terakami S, Iwanami H, Yamamoto T, Abe K (2016) Expression of a putative dioxygenase gene adjacent to an insertion mutation is involved in the short internodes of columnar apples (Malus×domestic). J Plant Res 129:1109–1126 Otto D, Petersen R, Brauksiepe B, Braun P, Schmidt ER (2014) The columnar mutation (‘Co gene’) of apple (Malus×domestic) is associated with an integration of a Gypsy-like retrotransposon. Mol Breed 33:863–880 Pan J, Zhang M, Kong X, Xing X, Liu Y, Zhou Y, Li D (2012) ZmMPK17, a novel maize group D MAP kinase gene, is involved multiple stress response. Planta 235:661–676 Petersen R, Krost C (2013) Tracing a key player in the regulation of plant architecture: the columnar growth habit of apple trees (Malus×domestica). Planta 238:1–22 Petersen R, Djozgic H, Rieger B, Rapp S, Schmidt ER (2015) Columnar apple primary roots share some features of the columnar specific gene expression profile of aerial plant parts as evidenced by RNA-Seq analysis. BMC Plant Biol 15:34 Pose D, Castanedo I, Borsani O, Nieto B, Rosado A, Taconnat L, Ferrer A, Dolan L, Valpuesta V, Botella MA (2009) Identification of the Arabidopsis dry2/sqe1-5 mutant reveals a central role for sterols in drought tolerance and regulation of reactive oxygen species. Plant J 59:63–76 Qin F, Sakuma Y, Tran LSP, Maruyama K, Kidokoro S, Fujita Y, Fujita M, Umezawa T, Sawano Y, Miyazono KI (2008) Arabidopsis DREB2A-interacting proteins function as Ring E3 liagases and negatively regulate plant drought stress-responsive gene expression. Plant Cell 20:1693–1707 Sato H, Takasaki H, Takahashi F, Suzuki T, Iuchi S, Mitsuda N, Ohme-Takagi M, Ikeda M, Seo M, Yamaguchi-Shinozaki K, Shinozaki K (2018) Arabidopsis thaliana NGATHA1 transcription factor induces ABA biosynthesis by activating NCED3 gene during dehydration stresss. Proc Natl Acad Sci USA 115:E11178–E11187 Verma V, Ravindran P, Kumar P (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16:86 Wang YC, Qu GZ, Li HY, Wu YJ, Wang C, Liu GF, Yang CP (2010) Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii. Mol Biol Rep 37:1119–1124 Wolters PJ, Schouten HJ, Velasco R, Si-Ammour A, Baldi P (2013) Evidence for regulation of columnar habit in apple by a putative 2OG-Fe(II) oxygenase. New Phytol 200:993–999 Yang W, Liu XD, Chi XJ, Wu CA, Li YZ, Song LL, Liu XM, Wang YF, Wang FW, Zhang C, Liu Y, Zong JM, Li HY (2011) Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways. Planta 233:219–229 Yoshida T, Fujita Y, Sayama H, Kyonoshin S, Maruyama K, Mizoi J, Shinozaki K, Shinozaki KY (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61:672–685 Yoshida T, Mogami J, Yamguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Plant Biol 21:133–139 Zhang YG, Dai HY (2011) Comparison of photosynthetic and morphological characteristics, and micro-structure of roots and shoots, between columnar apple and standard apple trees of hybrid seedlings. Phyton 80:119–125 Zhang YG, Zhu J, Dai HY (2012) Characterization of transcriptional differences between columnar and standard apple trees using RNA-seq. Plant Mol Biol Rep 30:957–965 Zhang W, Yang H, You Y, Xu K, Ran K, Fans, (2014) Cloning, characterization and functional analysis of the role MhNCED3, a gene encoding 9-cis-epoxycarotenoid dioxygenase in Malus hupensis Rehd., plays in plant tolerance to osmotic and Cd2+ stress. Plant Soil 381:143–160 Zhang WW, Yan HQ, You SZ, Ran K (2015) MhNCED3 in Malus hupehensis Rehd. Induces NO generation under osmotic stress by regulating ABA accumulation. Plant Physiol Biochem 96:254–260 Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273