Apparent diffusion coefficient (ADC): A potential in vivo biological surrogate of the incidentally discovered bone lesions at 3T MRI
Tài liệu tham khảo
Bernard, 2017, An approach to the evaluation of incidentally identified bone lesions encountered on imaging studies, Am. J. Roentgenol., 208, 960, 10.2214/AJR.16.17434
Fayad, 2012, Musculoskeletal tumors: how to use anatomic, functional, and metabolic MR techniques, Radiology, 265, 340, 10.1148/radiol.12111740
Liu, 2017, Detection of vertebral metastases: a meta-analysis comparing MRI, CT, PET, BS and BS with SPECT, J. Cancer Res. Clin. Oncol., 143, 457, 10.1007/s00432-016-2288-z
Malayeri, 2016, National Institutes of Health perspective on reports of gadolinium deposition in the brain, J. Am. Coll. Radiol. JACR, 13, 237, 10.1016/j.jacr.2015.11.009
Mithal, 2017, Use of gadolinium-based magnetic resonance imaging contrast agents and awareness of brain gadolinium deposition among pediatric providers in North America, Pediatr. Radiol., 47, 657, 10.1007/s00247-017-3810-4
Chavhan, 2014, Diffusion-weighted imaging in pediatric body MR imaging: principles, technique, and emerging applications, Radiogr. Rev. Publ. Radiol. Soc. N. Am. Inc., 34, E73
Hayashida, 2006, Evaluation of diffusion-weighted imaging for the differential diagnosis of poorly contrast-enhanced and T2-prolonged bone masses: initial experience, J. Magn. Reson. Imaging JMRI, 23, 377, 10.1002/jmri.20512
Douis, 2016, The role of diffusion-weighted MRI (DWI) in the differentiation of benign from malignant skeletal lesions of the pelvis, Eur. J. Radiol., 85, 2262, 10.1016/j.ejrad.2016.10.014
Pozzi, 2017, Solid bone tumors of the spine: diagnostic performance of apparent diffusion coefficient measured using diffusion-weighted MRI using histology as a reference standard, J. Magn. Reson. Imaging JMRI
Ahlawat, 2015, Differentiation of benign and malignant skeletal lesions with quantitative diffusion weighted MRI at 3T, Eur. J. Radiol., 84, 1091, 10.1016/j.ejrad.2015.02.019
Espinosa, 2008, CT-guided biopsy of bone: a radiologist’s perspective, Am. J. Roentgenol., 190, W283, 10.2214/AJR.07.3138
*Blinded*, (n.d.).
Oh, 2017, Multiparametric approach with diffusion-weighted imaging and dynamic contrast-enhanced MRI: a comparison study for differentiating between benign and malignant bone lesions in adults, Clin. Radiol., 72, 552, 10.1016/j.crad.2017.02.017
Higaki, 2018, Introduction to the technical aspects of computed diffusion-weighted imaging for radiologists, RadioGraphics, 38, 1131, 10.1148/rg.2018170115
Fukuda, 2019, MRI biomarkers in osseous tumors: biomarkers in osseous tumors, J. Magn. Reson. Imaging, 50, 702, 10.1002/jmri.26672
Park, 2016, Single-shot echo-planar diffusion-weighted MR imaging at 3T and 1.5T for differentiation of benign vertebral fracture edema and tumor infiltration, Korean J. Radiol., 17, 590, 10.3348/kjr.2016.17.5.590
Rosenkrantz, 2011, Diffusion-weighted imaging of the abdomen at 3.0 Tesla: image quality and apparent diffusion coefficient reproducibility compared with 1.5 Tesla, J. Magn. Reson. Imaging JMRI, 33, 128, 10.1002/jmri.22395
Zaharchuk, 2011, Reduced field-of-view diffusion imaging of the human spinal cord: comparison with conventional single-shot echo-planar imaging, AJNR Am. J. Neuroradiol., 32, 813, 10.3174/ajnr.A2418
Gatidis, 2016, Apparent diffusion coefficient-dependent voxelwise computed diffusion-weighted imaging: an approach for improving SNR and reducing T2 shine-through effects, J. Magn. Reson. Imaging JMRI, 43, 824, 10.1002/jmri.25044
Padhani, 2011, Diffusion magnetic resonance imaging in cancer patient management, Semin. Radiat. Oncol., 21, 119, 10.1016/j.semradonc.2010.10.004
Freihat, 2020, Diffusion-weighted imaging (DWI) derived from PET/MRI for lymph node assessment in patients with Head and Neck Squamous Cell Carcinoma (HNSCC), Cancer Imaging Off. Publ. Int. Cancer Imaging Soc., 20, 56
Littooij, 2015, Whole-body MRI-DWI for assessment of residual disease after completion of therapy in lymphoma: a prospective multicenter study, J. Magn. Reson. Imaging JMRI, 42, 1646, 10.1002/jmri.24938
Lacognata, 2017, Diffusion-weighted whole-body MRI for evaluation of early response in multiple myeloma, Clin. Radiol., 72, 850, 10.1016/j.crad.2017.05.004
Pekcevik, 2013, Diffusion-weighted magnetic resonance imaging in the diagnosis of bone tumors: preliminary results, J. Clin. Imaging Sci., 3, 63, 10.4103/2156-7514.124094
Wang, 2014, Role of apparent diffusion coefficients with diffusion-weighted magnetic resonance imaging in differentiating between benign and malignant bone tumor, World J. Surg. Oncol., 12, 10.1186/1477-7819-12-365
Cao, 2017, Diagnostic value of combined diffusion-weighted imaging with dynamic contrast enhancement MRI in differentiating malignant from benign bone lesions, Clin. Radiol., 72, 10.1016/j.crad.2017.04.017
Messiou, 2011, Optimising diffusion weighted MRI for imaging metastatic and myeloma bone disease and assessing reproducibility, Eur. Radiol., 21, 1713, 10.1007/s00330-011-2116-4
Padhani, 2013, Assessing the relation between bone marrow signal intensity and apparent diffusion coefficient in diffusion-weighted MRI, AJR Am. J. Roentgenol., 200, 163, 10.2214/AJR.11.8185
Douis, 2015, Is there a role for diffusion-weighted MRI (DWI) in the diagnosis of central cartilage tumors?, Skelet. Radiol., 44, 963, 10.1007/s00256-015-2123-7
Douis, 2014, MRI differentiation of low-grade from high-grade appendicular chondrosarcoma, Eur. Radiol., 24, 232, 10.1007/s00330-013-3003-y
McCarthy, 2007, CT-guided needle biopsies of bone and soft tissue tumors: a pathologist’s perspective, Skelet. Radiol., 36, 181, 10.1007/s00256-006-0244-8
Franchi, 2012, Epidemiology and classification of bone tumors, Clin. Cases Miner. Bone Metab. Off. J. Ital. Soc. Osteoporos. Miner. Metab. Skelet. Dis., 9, 92
Cronin, 2009, Bone biopsy of new suspicious bone lesions in patients with primary carcinoma: prevalence and probability of an alternative diagnosis, AJR Am. J. Roentgenol., 193, W407, 10.2214/AJR.08.1882