Apoptosis - the p53 network

Journal of Cell Science - Tập 116 Số 20 - Trang 4077-4085 - 2003
Abraham Rubinstein1, Michael Berger2, Zehavit Goldberg2, Ygal Haupt2
1Department of Pharmacy, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel.
2Lautenberg Center for General and Tumor Immunology, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel

Tóm tắt

Exposure to cellular stress can trigger the p53 tumor suppressor, a sequence-specific transcription factor, to induce cell growth arrest or apoptosis. The choice between these cellular responses is influenced by many factors, including the type of cell and stress, and the action of p53 co-activators. p53 stimulates a wide network of signals that act through two major apoptotic pathways. The extrinsic, death receptor pathway triggers the activation of a caspase cascade, and the intrinsic, mitochondrial pathway shifts the balance in the Bcl-2 family towards the pro-apoptotic members, promoting the formation of the apoptosome, and consequently caspase-mediated apoptosis. The impact of these two apoptotic pathways may be enhanced when they converge through Bid, which is a p53 target. The majority of these apoptotic effects are mediated through the induction of specific apoptotic target genes. However, p53 can also promote apoptosis by a transcription-independent mechanism under certain conditions. Thus, a multitude of mechanisms are employed by p53 to ensure efficient induction of apoptosis in a stage-, tissue- and stress-signal-specific manner. Manipulation of the apoptotic functions of p53 constitutes an attractive target for cancer therapy.

Từ khóa


Tài liệu tham khảo

Abarzua, P., LoSardo, J. E., Gubler, M. L., Spathis, R., Lu, Y. A., Felix, A. and Neri, A. (1996). Restoration of the transcription activation function to mutant p53 in human cancer cells. Oncogene13, 2477-2482.

Adams, J. M. and Cory, S. (1998). The Bcl-2 protein family: arbiters of cell survival. Science281, 1322-1326.

Adams, J. M. and Cory, S. (2002). Apoptosomes: engines for caspase activation. Curr. Opin. Cell Biol.14, 715-720.

Ashkenazi, A. and Dixit, V. M. (1998). Death receptors: signaling and modulation. Science281, 1305-1308.

Attardi, L. D., Reczek, E. E., Cosmas, C., Demicco, E. G., McCurrach, M. E., Lowe, S. W. and Jacks, T. (2000). PERP, an apoptosis-associated target of p53, is a novel member of the PMP-22/gas3 family. Genes Dev.14, 704-718.

Balint, E. E. and Vousden, K. H. (2001). Activation and activities of the p53 tumour suppressor protein. Br. J. Cancer85, 1813-1823.

Bennett, M., Macdonald, K., Chan, S. W., Luzio, J. P., Simari, R. and Weissberg, P. (1998). Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science282, 290-293.

Bouillet, P. and Straser, A. (2002). BH3-only proteins - evolutionarily conserved pro-apoptotic Bcl-2 family members essential for initiating programmed cell death. J. Cell Sci.115, 1567-1574.

Bouvard, V., Zaitchouk, T., Vacher, M., Duthu, A., Canivet, M., Choisy-Rossi, C., Nieruchalski, M. and May, E. (2000). Tissue and cell-specific expression of the p53-target genes: bax, fas, mdm2 and waf1/p21, before and following ionising irradiation in mice. Oncogene19, 649-660.

Bullock, A. N. and Fersht, A. R. (2001). Rescuing the function of mutant p53. Nat. Rev. Cancer1, 68-76.

Burns, T. F., Bernhard, E. J. and El-Deiry, W. S. (2001). Tissue specific expression of p53 target genes suggests a key role for KILLER/DR5 in p53-dependent apoptosis in vivo. Oncogene20, 4601-4612.

Buzek, J., Latonen, L., Kurki, S., Peltonen, K. and Laiho, M. (2002). Redox state of tumor suppressor p53 regulates its sequence-specific DNA binding in DNA-damaged cells by cysteine 277. Nucleic Acids Res.30, 2340-2348.

Bykov, V. J., Issaeva, N., Shilov, A., Hultcrantz, M., Pugacheva, E., Chumakov, P., Bergman, J., Wiman, K. G. and Selivanova, G. (2002). Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat. Med.8, 282-288.

Caelles, C., Helmberg, A. and Karin, M. (1994). p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature370, 220-223.

Chong, M. J., Murray, M. R., Gosink, E. C., Russell, H. R., Srinivasan, A., Kapsetaki, M., Korsmeyer, S. J. and McKinnon, P. J. (2000). ATM and Bax cooperate in ionizing radiation-induced apoptosis in the central nervous system. Proc. Natl. Acad. Sci. USA97, 889-894.

Contente, A., Dittmer, A., Koch, M. C., Roth, J. and Dobbelstein, M. (2002). A polymorphic microsatellite that mediates induction of PIG3 by p53. Nat. Genet.30, 315-320.

Cory, S. and Adams, J. M. (2002). The Bcl2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer2, 647-656.

Ding, H. F., McGill, G., Rowan, S., Schmaltz, C., Shimamura, A. and Fisher, D. E. (1998). Oncogene-dependent regulation of caspase activation by p53 protein in a cell-free system. J. Biol. Chem.273, 28378-28383.

el-Deiry, W. S., Kern, S. E., Pietenpol, J. A., Kinzler, K. W. and Vogelstein, B. (1992). Definition of a consensus binding site for p53. Nat. Genet.1, 45-49.

Flores, E. R., Tsai, K. Y., Crowley, D., Sengupta, S., Yang, A., McKeon, F. and Jacks, T. (2002). p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature416, 560-564.

Foster, B. A., Coffey, H. A., Morin, M. J. and Rastinejad, F. (1999). Pharmacological rescue of mutant p53 conformation and function. Science286, 2507-2510.

Friedler, A., Hansson, L. O., Veprintsev, D. B., Freund, S. M., Rippin, T. M., Nikolova, P. V., Proctor, M. R., Rudiger, S. and Fersht, A. R. (2002). A peptide that binds and stabilizes p53 core domain: chaperone strategy for rescue of oncogenic mutants. Proc. Natl. Acad. Sci. USA99, 937-942.

Fuchs, E. J., McKenna, K. A. and Bedi, A. (1997). p53-dependent DNA damage-induced apoptosis requires Fas/APO-1-independent activation of CPP32beta. Cancer Res.57, 2550-2554.

Galande, S., Dickinson, L. A., Mian, I. S., Sikorska, M. and Kohwi-Shigematsu, T. (2001). SATB1 cleavage by caspase 6 disrupts PDZ domain-mediated dimerization, causing detachment from chromatin early in T-cell apoptosis. Mol. Cell. Biol.21, 5591-5604.

Giaccia, A. J. and Kastan, M. B. (1998). The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev.12, 2973-2983.

Gottlieb, T. M., Martinez Leal, J. F., Seger, R., Taya, Y. and Oren, M. (2002). Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene21, 1299-1303.

Gross, A., Yin, X. M., Wang, K., Wei, M. C., Jocleil, J., Milliman, C., Erdjument-Bromage, H., Tempst, P. and Korsmeyer, S. J. (1999). Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J. Biol. Chem.274, 1156-1163.

Gudkov, A. V. (2002). Converting p53 from a killer into a healer. Nat. Med.8, 1196-1198.

Haupt, Y., Rowan, S., Shaulian, E., Vousden, K. H. and Oren, M. (1995). Induction of apoptosis in HeLa cells by trans-activation-deficient p53. Genes Dev.9, 2170-2183.

Herold, S., Wanzel, M., Beuger, V., Frohme, C., Beul, D., Hillukkala, T., Syvaoja, J., Saluz, H. P., Haenel, F. and Eilers, M. (2002). Negative regulation of the mammalian UV response by Myc through association with Miz-1. Mol. Cell10, 509-521.

Huang, D. C. and Strasser, A. (2000). BH3-Only proteins-essential initiators of apoptotic cell death. Cell103, 839-842.

Jin, S. and Levine, A. J. (2001). The p53 functional circuit. J. Cell Sci.114, 4139-4120.

Kaeser, M. D. and Iggo, R. D. (2002). Chromatin immunoprecipitation analysis fails to support the latency model for regulation of p53 DNA binding activity in vivo. Proc. Natl. Acad. Sci. USA99, 95-100.

Kannan, K., Kaminski, N., Rechavi, G., Jakob-Hirsch, J., Amariglio, N. and Givol, D. (2001). DNA microarray analysis of genes involved in p53 mediated apoptosis: activation of Apaf-1. Oncogene20, 3449-3455.

Kelekar, A. and Thompson, C. B. (1998). Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol.8, 324-330.

Kerr, J. F., Wyllie, A. H. and Currie, A. R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer26, 239-257.

Kim, A. L., Raffo, A. J., Brandt-Rauf, P. W., Pincus, M. R., Monaco, R., Abarzua, P. and Fine, R. L. (1999). Conformational and molecular basis for induction of apoptosis by a p53 C-terminal peptide in human cancer cells. J. Biol. Chem.274, 34924-34931.

Kuwana, T., Mackey, M. R., Perkins, G., Ellisman, M. H., Latterich, M., Schneiter, R., Green, D. R. and Newmeyer, D. D. (2002). Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell111, 331-342.

Lawlor, M. A. and Alessi, D. R. (2001). PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J. Cell Sci.114, 2903-2910.

LeBlanc, A., Liu, H., Goodyer, C., Bergeron, C. and Hammond, J. (1999). Caspase-6 role in apoptosis of human neurons, amyloidogenesis, and Alzheimer's disease. J. Biol. Chem.274, 23426-23436.

Li, H., Zhu, H., Xu, C. J. and Yuan, J. (1998). Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell94, 491-501.

Lohrum, M. A. and Vousden, K. H. (1999). Regulation and activation of p53 and its family members. Cell Death Differ.6, 1162-1168.

Luu, Y., Bush, J., Cheung, K. J., Jr and Li, G. (2002). The p53 stabilizing compound CP-31398 induces apoptosis by activating the intrinsic Bax/mitochondrial/caspase-9 pathway. Exp. Cell Res.276, 214-222.

MacLachlan, T. K. and El-Deiry, W. S. (2002). Apoptotic threshold is lowered by p53 transactivation of caspase-6. Proc. Natl. Acad. Sci. USA99, 9492-9497.

Marchenko, N. D., Zaika, A. and Moll, U. M. (2000). Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J. Biol. Chem.275, 16202-16212.

Marsden, V. S., O'Connor, D. J., O'Reilly, L. A., Silke, J., Metcalf, D., Ekert, P. G., Huang, D. C. S., Cecconni, F., Kulda, K., Tomaselli, K. J. et al. (2002). Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature419, 634-637.

Mayo, L. D. and Donner, D. B. (2002). The PTEN, Mdm2, p53 tumor suppressor-oncoprotein network. Trends Biochem. Sci.27, 462-467.

McCurrach, M. E., Connor, T. M., Knudson, C. M., Korsmeyer, S. J. and Lowe, S. W. (1997). Bax-deficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis. Proc. Natl. Acad. Sci. USA94, 2345-2349.

Mihara, M., Erster, S., Zaika, A., Petrenko, O., Chittenden, T., Pancoska, P. and Moll, U. M. (2003). p53 Has a Direct Apoptogenic Role at the Mitochondria. Mol. Cell11, 577-590.

Moroni, M. C., Hickman, E. S., Denchi, E. L., Caprara, G., Colli, E., Cecconi, F., Muller, H. and Helin, K. (2001). Apaf-1 is a transcriptional target for E2F and p53. Nat. Cell Biol.3, 552-558.

Muller, M., Wilder, S., Bannasch, D., Israeli, D., Lehlbach, K., Li-Weber, M., Friedman, S. L., Galle, P. R., Stremmel, W., Oren, M. et al. (1998). p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J. Exp. Med.188, 2033-2045.

Muzio, M. (1998). Signaling by proteolysis: death receptors induce apoptosis. Int. J. Clin. Lab. Res.28, 141-147.

Nagata, S. and Golstein, P. (1995). The Fas death factor. Science267, 1449-1456.

Nakano, K. and Vousden, K. H. (2001). PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell7, 683-694.

Nelson, V., Davis, G. E. and Maxwell, S. A. (2001). A putative protein inhibitor of activated STAT (PIASy) interacts with p53 and inhibits p53-mediated transactivation but not apoptosis. Apoptosis6, 221-234.

Nicholson, D. W. and Thornberry, N. A. (2003). Life and death decisions. Science299, 214-215.

O'Connor, L., Harris, A. W. and Strasser, A. (2000). CD95 (Fas/APO-1) and p53 signal apoptosis independently in diverse cell types. Cancer Res.60, 1217-1220.

Oda, E., Ohki, R., Murasawa, H., Nemoto, J., Shibue, T., Yamashita, T., Tokino, T., Taniguchi, T. and Tanaka, N. (2000). Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science288, 1053-1058.

Oren, M., Damalas, A., Gottlieb, T., Michael, D., Taplick, J., Leal, J. F., Maya, R., Moas, M., Seger, R., Taya, Y. et al. (2002). Regulation of p53: intricate loops and delicate balances. Biochem. Pharmacol.64, 865-871.

Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W. and Vogelstein, B. (1997). A model for p53-induced apoptosis. Nature389, 300-305.

Post, L. E. (2002). Selectively replicating adenoviruses for cancer therapy: an update on clinical development. Curr. Opin. Invest. Drugs3, 1768-1772.

Pritchard, D. M., Potten, C. S., Korsmeyer, S. J., Roberts, S. and Hickman, J. A. (1999). Damage-induced apoptosis in intestinal epithelia from bcl-2-null and bax-null mice: investigations of the mechanistic determinants of epithelial apoptosis in vivo. Oncogene18, 7287-7293.

Robles, A. I., Bemmels, N. A., Foraker, A. B. and Harris, C. C. (2001). APAF-1 is a transcriptional target of p53 in DNA damage-induced apoptosis. Cancer Res.61, 6660-6664.

Rozenfeld-Granot, G., Krishnamurthy, J., Kannan, K., Toren, A., Amariglio, N., Givol, D. and Rechavi, G. (2002). A positive feedback mechanism in the transcriptional activation of Apaf-1 by p53 and the coactivator Zac-1. Oncogene21, 1469-1476.

Samuels-Lev, Y., O'Connor, D. J., Bergamaschi, D., Trigiante, G., Hsieh, J. K., Zhong, S., Campargue, I., Naumovski, L., Crook, T. and Lu, X. (2001). ASPP proteins specifically stimulate the apoptotic function of p53. Mol. Cell8, 781-794.

Sax, J. K., Fei, P., Murphy, M. E., Bernhard, E., Korsmeyer, S. J. and El-Deiry, W. S. (2002). BID regulation by p53 contributes to chemosensitivity. Nat. Cell Biol.4, 842-849

Selivanova, G., Iotsova, V., Okan, I., Fritsche, M., Strom, M., Groner, B., Grafstrom, R. C. and Wiman, K. G. (1997). Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain. Nat. Med.3, 632-638.

Selivanova, G., Ryabchenko, L., Jansson, E., Iotsova, V. and Wiman, K. G. (1999). Reactivation of mutant p53 through interaction of a C-terminal peptide with the core domain. Mol. Cell Biol.19, 3395-3402.

Seo, Y. R., Kelley, M. R. and Smith, M. L. (2002). Selenomethionine regulation of p53 by a ref1-dependent redox mechanism. Proc. Natl. Acad. Sci. USA99, 14548-14553.

Seoane, J., Le, H. V. and Massague, J. (2002). Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature419, 729-734.

Shaul, Y. (2000). c-Abl: activation and nuclear targets. Cell Death Differ.7, 10-16.

Sheen, J. H. and Dickson, R. B. (2002). Overexpression of c-Myc alters G(1)/S arrest following ionizing radiation. Mol. Cell. Biol.22, 1819-1833.

Skulachev, V. P. (1998). Cytochrome c in the apoptotic and antioxidant cascades. FEBS Lett.423, 275-280.

Smith, M. L. and Fornace, A. J., Jr (2002). Chemotherapeutic targeting of p53. Cancer Biol. Ther.1, 56-57.

Soengas, M. S., Alarcon, R. M., Yoshida, H., Giaccia, A. J., Hakem, R., Mak, T. W. and Lowe, S. W. (1999). Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science284, 156-159.

Strasser, A., Harris, A. W., Jacks, T. and Cory, S. (1994). DNA damage can induce apoptosis in proliferating lymphoid cells via p53-independent mechanisms inhibitable by Bcl-2. Cell79, 329-339.

Takimoto, R., Wang, W., Dicker, D. T., Rastinejad, F., Lyssikatos, J. and el-Deiry, W. S. (2002). The mutant p53-conformation modifying drug, CP-31398, can induce apoptosis of human cancer cells and can stabilize wild-type p53 protein. Cancer Biol. Ther.1, 47-55.

Testa, J. R. and Bellacosa, A. (2001). AKT plays a central role in tumorigenesis. Proc. Natl. Acad. Sci. USA98, 10983-10985.

Thornborrow, E. C., Patel, S., Mastropietro, A. E., Schwartzfarb, E. M. and Manfredi, J. J. (2002). A conserved intronic response element mediates direct p53-dependent transcriptional activation of both the human and murine bax genes. Oncogene21, 990-999.

Urist, M. and Prives, C. (2002). p53 leans on its siblings. Cancer Cell1, 311-313.

Vafa, O., Wade, M., Kern, S., Beeche, M., Pandita, T. K., Hampton, G. M. and Wahl, G. M. (2002). c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol. Cell9, 1031-1044.

Varfolomeev, E. E., Schuchmann, M., Luria, V., Chiannilkulchai, N., Beckmann, J. S., Mett, I. L., Rebrikov, D., Brodianski, V. M., Kemper, O. C., Kollet, O. et al. (1998). Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo 1, and DR3 and is lethal prenatally. Immunity9, 267-276.

Vogelstein, B., Lane, D. and Levine, A. J. (2000). Surfing the p53 network. Nature408, 307-310.

Vogt Sionov, R. V. and Haupt, Y. (1999). The cellular response to p53: the decision between life and death. Oncogene18, 6145-6157.

Vogt Sionov, R., Hayon, L. I. and Haupt, Y. (2001). The regulation of p53 growth suppression. In Cell Cycle Checkpoints and Cancer (ed. M. V. Blagosklonny), pp. 106-125. Georgetown, Texas: Austin Landes Bioscience.

Wang, W., Takimoto, R., Rastinejad, F. and El-Deiry, W. S. (2003). Stabilization of p53 by CP-31398 inhibits ubiquitination without altering phosphorylation at serine 15 or 20 or MDM2 binding. Mol. Cell. Biol.23, 2171-2181.

Wen, S. F., Mahavni, V., Quijano, E., Shinoda, J., Grace, M., Musco-Hobkinson, M. L., Yang, T. Y., Chen, Y., Runnenbaum, I., Horowitz, J. et al. (2003). Assessment of p53 gene transfer and biological activities in a clinical study of adenovirus-p53 gene therapy for recurrent ovarian cancer. Cancer Gene Ther.10, 224-238.

Wu, G. S., Burns, T. F., McDonald, E. R., 3rd, Jiang, W., Meng, R., Krantz, I. D., Kao, G., Gan, D. D., Zhou, J. Y., Muschel, R. et al. (1997). KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat. Genet.17, 141-143.

Yin, Y., Liu, Y. X., Jin, Y. J., Hall, E. J. and Barrett, J. C. (2003). PAC1 phosphatase is a transcription target of p53 in signalling apoptosis and growth suppression. Nature422, 527-531.

Yonish-Rouach, E., Resnitzky, D., Lotem, J., Sachs, L., Kimchi, A. and Oren, M. (1991). Wild-type p53 induces apoptosis of myeloid leukaemis cells that is inhibited by interleukin-6. Nature352, 345-347.

Yu, J., Zhang, L., Hwang, P., Kinzler, K. W. and Vogelstein, B. (2001). PUMA induces the rapid apoptosis of colorectal cancer cells. Mol. Cell7, 673-682.

Yu, J., Wang, Z., Kinzler, K. W., Vogelstein, B. and Zhang, L. (2003). PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc. Natl. Acad. Sci. USA100, 1931-1936.