Antiviral activity of Rheum palmatum methanol extract and chrysophanol against Japanese encephalitis virus

Archives of Pharmacal Research - Tập 37 - Trang 1117-1123 - 2014
Shu-Jen Chang1, Su-Hua Huang2, Ying-Ju Lin3,4, Yi-Yun Tsou1,5, Cheng-Wen Lin2,5
1School of Pharmacy, China Medical University, Taichung, Taiwan
2Department of Biotechnology, College of Health Science, Asia University, Wufeng, Taichung, Taiwan
3School of Chinese Medicine, China Medical University, Taichung, Taiwan
4Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
5Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan

Tóm tắt

Rheum palmatum, Chinese traditional herb, exhibits a great variety of anti-cancer and anti-viruses properties. This study rates antiviral activity of R. palmatum extracts and its components against Japanese encephalitis virus (JEV) in vitro. Methanol extract of R. palmatum contained higher levels of aloe emodin, chrysophanol, rhein, emodin and physcion than water extract. Methanol extract (IC50 = 15.04 μg/ml) exhibited more potent inhibitory effects on JEV plaque reduction than water extract (IC50 = 51.41 μg/ml). Meanwhile, IC50 values determined by plaque reduction assay were 15.82 μg/ml for chrysophanol and 17.39 μg/ml for aloe-emodin, respectively. Virucidal activity of agents correlated with anti-JEV activity, while virucidal IC50 values were 7.58 μg/ml for methanol extract, 17.36 μg/ml for water extract, 0.75 μg/ml for chrysophanol and 0.46 μg/ml for aloe-emodin, respectively. In addition, 10 μg/ml of extract, chrysophanol or aloe emodin caused 90 % inhibition of JEV yields in cells and significantly activated gamma activated sequence-driven promoters. Hence, methanol extract of R. palmatum and chrysophanol with high therapeutic index might be useful for development of antiviral agents against JEV.

Tài liệu tham khảo

Andersen, D.O., N.D. Weber, S.G. Wood, B.G. Hughes, B.K. Murray, and J.A. North. 1991. In vitro virucidal activity of selected anthraquinones and anthraquinone derivatives. Antiviral Research 16: 185–196. Barnard, D.L., J.H. Huffman, J.L. Morris, S.G. Wood, B.G. Hughes, and R.W. Sidwell. 1992. Evaluation of the antiviral activity of anthraquinones, anthrones and anthraquinone derivatives against human cytomegalovirus. Antiviral Research 17: 63–77. Cheney, I.W., V.C. Lai, W. Zhong, T. Brodhag, S. Dempsey, C. Lim, Z. Hong, J.Y. Lau, and R.C. Tam. 2002. Comparative analysis of anti-hepatitis C virus activity and gene expression mediated by alpha, beta, and gamma interferons. Journal of Virology 76: 11148–11154. Cheng, H.Y., L.T. Lin, H.H. Huang, C.M. Yang, and C.C. Lin. 2008. Yin Chen Hao Tang, a Chinese prescription, inhibits both herpes simplex virus type-1 and type-2 infections in vitro. Antiviral Research 77: 14–19. Chung, C.C., S.S. Lee, Y.S. Chen, H.C. Tsai, S.R. Wann, C.H. Kao, and Y.C. Liu. 2007. Acute flaccid paralysis as an unusual presenting symptom of Japanese encephalitis: a case report and review of the literature. Infection 35: 30–32. Hsiao, N.W., J.W. Chen, T.C. Yang, G.M. Orloff, Y.Y. Wu, C.H. Lai, Y.C. Lan, and C.W. Lin. 2010. ISG15 over-expression inhibits replication of the Japanese encephalitis virus in human medulloblastoma cells. Antiviral Research 85: 504–511. Huang, Q., G. Lu, H.M. Shen, M.C. Chung, and C.N. Ong. 2007. Anti-cancer properties of anthraquinones from rhubarb. Medicinal Research Reviews 27: 609–630. Huang, S.H., T.C. Yang, M.H. Tsai, I.S. Tsai, H.C. Lu, P.H. Chuang, L. Wan, Y.J. Lin, C.H. Lai, and C.W. Lin. 2008. Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus. Nanotechnology 19: 405101. Kaur, R., and S. Vrati. 2003. Development of a recombinant vaccine against Japanese encephalitis. Journal of Neurovirology 9: 421–431. Kubin, A., F. Wierrani, U. Burner, G. Alth, and W. Grünberger. 2005. Hypericin—The facts about a controversial agent. Current Pharmaceutical Design 11: 233–253. Kuo, P.L., T.C. Lin, and C.C. Lin. 2002. The anti-proliferative activity of aloe-emodin is through p53-dependent and p21-dependent apoptotic pathway in human hepatoma cell lines. Life Sciences 71: 1879–1892. Kurokawa, M., H. Ochiai, K. Nagasaka, M. Neki, H. Xu, S. Kadota, S. Sutardjo, T. Matsumoto, T. Namba, and K. Shiraki. 1993. Antiviral traditional medicines against herpes simplex virus (HSV-1), poliovirus, and measles virus in vitro and their therapeutic efficacies for HSV-1 infection in mice. Antiviral Research 22: 175–188. Larkin, J., L. Jin, M. Farmen, D. Venable, Y. Huang, S.L. Tan, and J.I. Glass. 2003. Synergistic antiviral activity of human interferon combinations in the hepatitis C virus replicon system. Journal of Interferon and Cytokine Research 23: 247–257. Li, Z., L.J. Li, Y. Sun, and J. Li. 2007. Identification of natural compounds with anti-hepatitis B virus activity from Rheum palmatum L. ethanol extract. Chemotherapy 53: 320–326. Lin, J.G., G.W. Chen, T.M. Li, S.T. Chouh, T.W. Tan, and J.G. Chung. 2006. Aloe-emodin induces apoptosis in T24 human bladder cancer cells through the p53 dependent apoptotic pathway. The Journal of Urology 175: 343–347. Lin, C.W., C.F. Wu, N.W. Hsiao, C.Y. Chang, S.W. Li, L. Wan, Y.J. Lin, and W.Y. Lin. 2008. Aloe-emodin is an interferon-inducing agent with antiviral activity against Japanese encephalitis virus and enterovirus 71. International Journal of Antimicrobial Agents 32: 355–359. Luo, W., X. Su, S. Gong, Y. Qin, W. Liu, J. Li, H. Yu, and Q. Xu. 2009. Anti-SARS coronavirus 3C-like protease effects of Rheum palmatum L. extracts. Bioscience Trends 3: 124–126. Mijatovic, S., D. Maksimovic-Ivanic, J. Radovic, D.J. Miljkovic, L.J. Harhaji, O. Vuckovic, S. Stosic-Grujicic, Mostarica, M. Mostarica, and V. Trajkovic. 2005. Anti-glioma action of aloe emodin: The role of ERK inhibition. Cellular and Molecular Life Sciences 62: 589–598. Moraes, M.P., T. de Los Santos, M. Koster, T. Turecek, H. Wang, V.G. Andreyev, M.J. Grubman, V.J. Andreyev, and M.J. Grubman. 2007. Enhanced antiviral activity against foot-and-mouth disease virus by a combination of type I and II porcine interferons. Journal of Virology 81: 7124–7135. Mossel, E.C., B. Sainz Jr, R.F. Garry, and C.J. Peters. 2006. Synergistic inhibition of SARS-coronavirus replication by type I and type II IFN. Advances in Experimental Medicine and Biology 581: 503–506. Peng, T., J. Zhu, Y. Hwangbo, L. Corey, and R.E. Bumgarner. 2008. Independent and cooperative antiviral actions of beta interferon and gamma interferon against herpes simplex virus replication in primary human fibroblasts. Journal of Virology 82: 1934–1945. Scagnolari, C., S. Trombetti, A. Alberelli, S. Cicetti, D. Bellarosa, R. Longo, A. Spanò, E. Riva, M. Clementi, and G. Antonelli. 2007. The synergistic interaction of interferon types I and II leads to marked reduction in severe acute respiratory syndrome-associated coronavirus replication and increase in the expression of mRNAs for interferon-induced proteins. Intervirology 50: 156–160. Semple, S.J., S.M. Pyke, G.D. Reynolds, and R.L. Flower. 2001. In vitro antiviral activity of the anthraquinone chrysophanic acid against poliovirus. Antiviral Research 49: 169–178. Shuangsuo, D., Z. Zhengguo, C. Yunru, Z. Xin, W. Baofeng, Y. Lichao, and C. Yan’an. 2006. Inhibition of the replication of hepatitis B virus in vitro by emodin. Medical Science Monitor 12: 3026. Sydiskis, R.J., D.G. Owen, J.L. Lohr, K.H. Rosler, and R.N. Blomster. 1991. Inactivation of enveloped viruses by anthraquinones extracted from plants. Antimicrobial Agents and Chemotherapy 35: 2463–2466. Unni, S.K., D. Růžek, C. Chhatbar, R. Mishra, M.K. Johri, and S.K. Singh. 2011. Japanese encephalitis virus: From genome to infectome. Microbes and Infection 13: 312–321. Xu, X., L. Li, and J. Cong. 2005. An overview of antiviral research of Chinese medicine Rhubarb. China Pharmacist 8: 70–72. Wohlfarth, C., and T. Efferth. 2009. Natural products as promising drug candidates for the treatment of hepatitis B and C. Acta Pharmacologic Sinica 30: 25–30.