Antisense oligonucleotide gapmers containing phosphoryl guanidine groups reverse MDR1-mediated multiple drug resistance of tumor cells
Tài liệu tham khảo
Zamecnik, 1978, Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide, Proc. Natl. Acad. Sci. U S A, 75, 280, 10.1073/pnas.75.1.280
Quemener, 2020, The powerful world of antisense oligonucleotides: from bench to bedside, Wiley Interdiscip. Rev. RNA, 11, e1594, 10.1002/wrna.1594
Bajan, 2020, RNA-based therapeutics: from antisense oligonucleotides to miRNAs, Cells, 9, 137, 10.3390/cells9010137
Karkare, 2006, Promising nucleic acid analogs and mimics: characteristic features and applications of PNA, LNA, and morpholino, Appl. Microbiol. Biotechnol., 71, 575, 10.1007/s00253-006-0434-2
Pérez, 2010, Present and future of antisense therapy for splicing modulation in inherited metabolic disease, J. Inherit. Metab. Dis., 33, 397, 10.1007/s10545-010-9135-1
Singh, 2018, Pre-mRNA splicing modulation by antisense oligonucleotides, Methods Mol. Biol., 1828, 415, 10.1007/978-1-4939-8651-4_26
Opalinska, 2002, Nucleic-acid therapeutics: basic principles and recent applications, Nat. Rev. Drug Discov., 1, 503, 10.1038/nrd837
Kaczmarek, 2017, Advances in the delivery of RNA therapeutics: from concept to clinical reality, Genome Med., 9, 60, 10.1186/s13073-017-0450-0
Prakash, 2011, An overview of sugar-modified oligonucleotides for antisense therapeutics, Chem. Biodivers., 8, 1616, 10.1002/cbdv.201100081
Sahu, 2007, Antisense technology: a selective tool for gene expression regulation and gene targeting, Curr. Pharm. Biotechnol., 8, 291, 10.2174/138920107782109985
Dirin, 2013, Influence of diverse chemical modifications on the ADME characteristics and toxicology of antisense oligonucleotides, Expert Opin. Biol. Ther., 13, 875, 10.1517/14712598.2013.774366
Crooke, 2017, Cellular uptake and trafficking of antisense oligonucleotides, Nat. Biotechnol., 35, 230, 10.1038/nbt.3779
Iannitti, 2014, Phosphorothioate oligonucleotides: effectiveness and toxicity, Curr. Drug Targets, 15, 663, 10.2174/1389450115666140321100304
Koizumi, 2007, True antisense oligonucleotides with modified nucleotides restricted in the N-conformation, Curr. Top. Med. Chem., 7, 661, 10.2174/156802607780487768
Itoh, 2014, Target gene knockdown by 2′,4′-BNA/LNA antisense oligonucleotides in zebrafish, Nucleic Acid Ther., 24, 186, 10.1089/nat.2013.0464
Imanishi, 2002, BNAs: novel nucleic acid analogs with a bridged sugar moiety, Chem. Commun., 2, 1653, 10.1039/b201557a
Nielsen, 2010, Peptide nucleic acids (PNA) in chemical biology and drug discovery, Chem. Biodivers., 7, 786, 10.1002/cbdv.201000005
Summerton, 1997, Morpholino antisense oligomers: design, preparation, and properties, Antisense Nucleic Acid Drug Dev., 7, 187, 10.1089/oli.1.1997.7.187
Stein, 2017, FDA-approved oligonucleotide therapies in 2017, Mol. Ther., 25, 1069, 10.1016/j.ymthe.2017.03.023
Heo, 2020, Golodirsen: first approval, Drugs, 80, 329, 10.1007/s40265-020-01267-2
Shirley, 2021, Casimersen: first approval, Drugs, 81, 875, 10.1007/s40265-021-01512-2
Keam, 2018, Inotersen: first global approval, Drugs, 78, 1371, 10.1007/s40265-018-0968-5
Cazenave, 1989, Comparative inhibition of rabbit globin mRNA translation by modified antisense oligodeoxynucleotides, Nucleic Acids Res., 17, 4255, 10.1093/nar/17.11.4255
Ferrari, 2006, Characterization of antisense oligonucleotides comprising 2′-deoxy-2′-fluoro-β-D-arabinonucleic acid (FANA): specificity, potency, and duration of activity, Ann. N. Y. Acad. Sci., 1082, 91, 10.1196/annals.1348.032
Miroshnichenko, 2019, Mesyl phosphoramidate antisense oligonucleotides as an alternative to phosphorothioates with improved biochemical and biological properties, Proc. Natl. Acad. Sci. U S A, 116, 1229, 10.1073/pnas.1813376116
Malchère, 2000, A short phosphodiester window is sufficient to direct RNase H-dependent RNA cleavage by antisense peptide nucleic acid, Antisense Nucleic Acid Drug Dev., 10, 463, 10.1089/oli.1.2000.10.463
Prakash, 2004, 2′-O-[2-[N,N-Dimethylamino)oxy]ethyl]-modified oligonucleotides inhibit expression of mRNA in vitro and in vivo, Nucleic Acids Res., 32, 828, 10.1093/nar/gkh220
Fluiter, 2005, On the in vitro and in vivo properties of four locked nucleic acid nucleotides incorporated into an anti-H-Ras antisense oligonucleotide, ChemBioChem, 6, 1104, 10.1002/cbic.200400419
Kupryushkin, 2014, Phosphoryl guanidines: a new type of nucleic acid analogues, Acta Naturae, 6, 116, 10.32607/20758251-2014-6-4-116-118
Stetsenko, 2016
Garafutdinov, 2020, Prevention of DNA multimerization using phosphoryl guanidine primers during isothermal amplification with Bst exo-DNA polymerase, Biochimie, 168, 259, 10.1016/j.biochi.2019.11.013
Chubarov, 2020, Allele-specific PCR for KRAS mutation detection using phosphoryl guanidine modified primers, Diagnostics, 10, 872, 10.3390/diagnostics10110872
Skvortsova, 2019, A new antisense phosphoryl guanidine oligo-2′-O-methylribonucleotide penetrates into intracellular mycobacteria and suppresses target gene expression, Front. Pharmacol., 10, 1049, 10.3389/fphar.2019.01049
Levina, 2017, Impact of delivery method on antiviral activity of phosphodiester, phosphorothioate, and phosphoryl guanidine oligonucleotides in MDCK cells infected with H5N1 bird flu virus, Mol. Biol. (Mosk)., 51, 717, 10.1134/S0026893317040136
Su, 2020, The importance of phosphates for DNA G-quadruplex formation: evaluation of zwitterionic G-rich oligodeoxynucleotides, ChemBioChem, 21, 2455, 10.1002/cbic.202000110
Lomzov, 2019, Diastereomers of a mono-substituted phosphoryl guanidine trideoxyribonucleotide: isolation and properties, Biochem. Biophys. Res. Commun., 513, 807, 10.1016/j.bbrc.2019.04.024
Ambudkar, 1999, Biochemical, cellular, and pharmacological aspects of the multidrug transporter, Annu. Rev. Pharmacol. Toxicol., 39, 361, 10.1146/annurev.pharmtox.39.1.361
Choi, 2005, ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal, Cancer Cell Int, 5, 30, 10.1186/1475-2867-5-30
Stavrovskaya, 2008, Transport proteins of the ABC family and multidrug resistance of tumor cells, Biochem, 73, 592
Kostenko, 2002, Downregulation of PGY1/MDR1 mRNA level in human KB cells by antisense oligonucleotide conjugates. RNA accessibility in vitro and intracellular antisense activity, Biochim. Biophys. Acta - Gene Struct. Expr., 1576, 143, 10.1016/S0167-4781(02)00339-1
Logashenko, 2004, Silencing of MDR 1 gene in cancer cells by siRNA, Nucleosides, Nucleotides and Nucleic Acids, 23, 861, 10.1081/NCN-200026032
Kitamura, 2014, A reagent for safe and efficient diazo-transfer to primary amines: 2-azido-1,3-dimethylimidazolinium hexafluorophosphate, Org. Biomol. Chem., 12, 4397, 10.1039/c4ob00515e
Kitamura, 2016, Synthesis of 2-azido-1,3-dimethylimidazolinium hexafluorophosphate (ADMP), 171
Guzaev, 2011, Reactivity of 3H-1,2,4-dithiazole-3-thiones and 3H-1,2-dithiole-3-thiones as sulfurizing agents for oligonucleotide synthesis, Tetrahedron Lett., 52, 434, 10.1016/j.tetlet.2010.11.086
Golyshev, 2021, Effects of phosphoryl guanidine modification of phosphate residues on the structure and hybridization of oligodeoxyribonucleotides, J. Phys. Chem. B, 125, 2841, 10.1021/acs.jpcb.0c10214
Herkt, 2021, Pharmacokinetics and proceedings in clinical application of nucleic acid therapeutics, Mol. Ther., 29, 521, 10.1016/j.ymthe.2020.11.008
Muller, 1995, Evidence for transcriptional control of human mdr1 gene expression by verapamil in multidrug-resistant leukemic cells, Mol. Pharmacol., 47, 51
Prokipcak, 1999, The AU-rich 3’ untranslated region of human MDR1 mRNA is an inefficient mRNA destabilizer, Biochem. Biophys. Res. Commun., 261, 627, 10.1006/bbrc.1999.1101
Richert, 1988, Stability and covalent modification of P-glycoprotein in multidrug-resistant KB cells, Biochemistry, 27, 7607, 10.1021/bi00420a006
Scharner, 2021, Clinical applications of single-stranded oligonucleotides: current landscape of approved and in-development therapeutics, Mol. Ther., 29, 540, 10.1016/j.ymthe.2020.12.022
Kuijper, 2021, Opportunities and challenges for antisense oligonucleotide therapies, J. Inherit. Metab. Dis., 44, 72, 10.1002/jimd.12251
Zhou, 2019, Current RNA-based therapeutics in clinical trials, Curr. Gene Ther., 19, 172, 10.2174/1566523219666190719100526
Smith, 2019, Therapeutic oligonucleotides: state of the art, Annu. Rev. Pharmacol. Toxicol., 59, 605, 10.1146/annurev-pharmtox-010818-021050
Dhuri, 2020, Antisense oligonucleotides: an emerging area in drug discovery and development, J. Clin. Med., 9, 2004, 10.3390/jcm9062004
Letsinger, 1975, Synthesis of phosphoromonoamidate diester nucleotides via the phosphite-azide coupling method, Tetrahedron Lett., 16, 147, 10.1016/S0040-4039(00)72493-2
Anderson, 2021, Towards next generation antisense oligonucleotides: mesylphosphoramidate modification improves therapeutic index and duration of effect of gapmer antisense oligonucleotides, Nucleic Acids Res., 49, 9026, 10.1093/nar/gkab718
Pavlova, 2018, SDS-PAGE procedure: application for characterization of new entirely uncharged nucleic acids analogs, Electrophoresis, 39, 670, 10.1002/elps.201700415
Dyudeeva, 2021, Problems of the synthesis of oligonucleotide derivatives in the realization of the anchimeric effect, Russ. J. Bioorg. Chem., 47, 505, 10.1134/S1068162021020096
Johannes, 2018, Current challenges in delivery and cytosolic translocation of therapeutic RNAs, Nucleic Acid Ther., 28, 178, 10.1089/nat.2017.0716
Cerritelli, 2009, Ribonuclease H: the enzymes in eukaryotes, FEBS J., 276, 1494, 10.1111/j.1742-4658.2009.06908.x
Summerton, 1999, Morpholino antisense oligomers: the case for an RNase H-independent structural type, Biochim. Biophys. Acta - Gene Struct. Expr., 1489, 141, 10.1016/S0167-4781(99)00150-5
Mironova, 2006, Animal model of drug-resistant tumor progression, Ann. N. Y. Acad. Sci., 1091, 490, 10.1196/annals.1378.090
Patutina, 2020, Mesyl phosphoramidate backbone modified antisense oligonucleotides targeting miR-21 with enhanced in vivo therapeutic potency, Proc. Natl. Acad. Sci. U S A, 117, 32370, 10.1073/pnas.2016158117
Chelobanov, 2017, New oligodeoxynucleotide derivatives containing N-(methanesulfonyl)-phosphoramidate (mesyl phosphoramidate) internucleotide group, Russ. J. Bioorg. Chem., 43, 664, 10.1134/S1068162017060024
Brand, 2000, Transdermal delivery of antisense compounds, Adv. Drug Deliv. Rev., 44, 51, 10.1016/S0169-409X(00)00083-1
Lebleu, 2008, Cell penetrating peptide conjugates of steric block oligonucleotides, Adv. Drug Deliv. Rev., 60, 517, 10.1016/j.addr.2007.09.002
Negishi, 2018, PMO delivery system using bubble liposomes and ultrasound exposure for Duchenne muscular dystrophy treatment, Methods Mol. Biol., 1687, 185, 10.1007/978-1-4939-7374-3_13
Moulton, 2003, HIV Tat peptide enhances cellular delivery of antisense morpholino oligomers, Antisense Nucleic Acid Drug Dev., 13, 31, 10.1089/108729003764097322
Arora, 2002, Transdermal use of phosphorodiamidate morpholino oligomer AVI-4472 inhibits cytochrome P450 3A2 activity in male rats, Pharm. Res., 19, 1465, 10.1023/A:1020448430919
Shimojo, 2019, A gapmer antisense oligonucleotide targeting SRRM4 is a novel therapeutic medicine for lung cancer, Sci. Rep., 9, 7618, 10.1038/s41598-019-43100-1
Marrosu, 2017, Gapmer antisense oligonucleotides suppress the mutant allele of COL6A3 and restore functional protein in Ullrich muscular dystrophy, Mol. Ther. - Nucleic Acids, 8, 416, 10.1016/j.omtn.2017.07.006
Mutso, 2015, RNA interference-guided targeting of hepatitis C virus replication with antisense locked nucleic acid-based oligonucleotides containing 8-oxo-dG modifications, PLoS ONE, 10, e0128686, 10.1371/journal.pone.0128686
Takahashi, 2019, Dual mechanisms of action of self-delivering, anti-HIV-1 FANA oligonucleotides as a potential new approach to HIV therapy, Mol. Ther. - Nucleic Acids, 17, 615, 10.1016/j.omtn.2019.07.001
Kumar, 2013, Anti-SARS coronavirus agents: a patent review (2008-present), Expert Opin. Ther. Pat., 23, 1337, 10.1517/13543776.2013.823159
Patutina, 2018, Peptide-oligonucleotide conjugates exhibiting pyrimidine-X cleavage specificity efficiently silence miRNA target acting synergistically with RNase, H. Sci. Rep., 8, 14990
Markov, 2015, Multicomponent mannose-containing liposomes efficiently deliver RNA in murine immature dendritic cells and provide productive anti-tumour response in murine melanoma model, J. Control Release, 213, 45, 10.1016/j.jconrel.2015.06.028
Mironova, 2007, RNase T1 mimicking artificial ribonuclease, Nucleic Acids Res., 35, 2356, 10.1093/nar/gkm143