Antisense oligonucleotide gapmers containing phosphoryl guanidine groups reverse MDR1-mediated multiple drug resistance of tumor cells

Molecular Therapy - Nucleic Acids - Tập 27 - Trang 211-226 - 2022
Maxim S. Kupryushkin1, Anton V. Filatov1, Nadezhda L. Mironova1, Olga A. Patutina1, Ivan V. Chernikov1, Elena L. Chernolovskaya1, Marina A. Zenkova1, Dmitrii V. Pyshnyi1, Dmitry A. Stetsenko2,3, Sidney Altman4,5,6, Valentin V. Vlassov1
1Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
2Department of Physics, Novosibirsk State University, Pirogov Str. 2, Novosibirsk 630090, Russia
3Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 10, Novosibirsk 630090, Russia
4Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
5Life Sciences, Arizona State University, Tempe, AZ 85281, USA
6Montreal Clinical Research Institute, Montreal QC H2W 1R7, Canada

Tài liệu tham khảo

Zamecnik, 1978, Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide, Proc. Natl. Acad. Sci. U S A, 75, 280, 10.1073/pnas.75.1.280 Quemener, 2020, The powerful world of antisense oligonucleotides: from bench to bedside, Wiley Interdiscip. Rev. RNA, 11, e1594, 10.1002/wrna.1594 Bajan, 2020, RNA-based therapeutics: from antisense oligonucleotides to miRNAs, Cells, 9, 137, 10.3390/cells9010137 Karkare, 2006, Promising nucleic acid analogs and mimics: characteristic features and applications of PNA, LNA, and morpholino, Appl. Microbiol. Biotechnol., 71, 575, 10.1007/s00253-006-0434-2 Pérez, 2010, Present and future of antisense therapy for splicing modulation in inherited metabolic disease, J. Inherit. Metab. Dis., 33, 397, 10.1007/s10545-010-9135-1 Singh, 2018, Pre-mRNA splicing modulation by antisense oligonucleotides, Methods Mol. Biol., 1828, 415, 10.1007/978-1-4939-8651-4_26 Opalinska, 2002, Nucleic-acid therapeutics: basic principles and recent applications, Nat. Rev. Drug Discov., 1, 503, 10.1038/nrd837 Kaczmarek, 2017, Advances in the delivery of RNA therapeutics: from concept to clinical reality, Genome Med., 9, 60, 10.1186/s13073-017-0450-0 Prakash, 2011, An overview of sugar-modified oligonucleotides for antisense therapeutics, Chem. Biodivers., 8, 1616, 10.1002/cbdv.201100081 Sahu, 2007, Antisense technology: a selective tool for gene expression regulation and gene targeting, Curr. Pharm. Biotechnol., 8, 291, 10.2174/138920107782109985 Dirin, 2013, Influence of diverse chemical modifications on the ADME characteristics and toxicology of antisense oligonucleotides, Expert Opin. Biol. Ther., 13, 875, 10.1517/14712598.2013.774366 Crooke, 2017, Cellular uptake and trafficking of antisense oligonucleotides, Nat. Biotechnol., 35, 230, 10.1038/nbt.3779 Iannitti, 2014, Phosphorothioate oligonucleotides: effectiveness and toxicity, Curr. Drug Targets, 15, 663, 10.2174/1389450115666140321100304 Koizumi, 2007, True antisense oligonucleotides with modified nucleotides restricted in the N-conformation, Curr. Top. Med. Chem., 7, 661, 10.2174/156802607780487768 Itoh, 2014, Target gene knockdown by 2′,4′-BNA/LNA antisense oligonucleotides in zebrafish, Nucleic Acid Ther., 24, 186, 10.1089/nat.2013.0464 Imanishi, 2002, BNAs: novel nucleic acid analogs with a bridged sugar moiety, Chem. Commun., 2, 1653, 10.1039/b201557a Nielsen, 2010, Peptide nucleic acids (PNA) in chemical biology and drug discovery, Chem. Biodivers., 7, 786, 10.1002/cbdv.201000005 Summerton, 1997, Morpholino antisense oligomers: design, preparation, and properties, Antisense Nucleic Acid Drug Dev., 7, 187, 10.1089/oli.1.1997.7.187 Stein, 2017, FDA-approved oligonucleotide therapies in 2017, Mol. Ther., 25, 1069, 10.1016/j.ymthe.2017.03.023 Heo, 2020, Golodirsen: first approval, Drugs, 80, 329, 10.1007/s40265-020-01267-2 Shirley, 2021, Casimersen: first approval, Drugs, 81, 875, 10.1007/s40265-021-01512-2 Keam, 2018, Inotersen: first global approval, Drugs, 78, 1371, 10.1007/s40265-018-0968-5 Cazenave, 1989, Comparative inhibition of rabbit globin mRNA translation by modified antisense oligodeoxynucleotides, Nucleic Acids Res., 17, 4255, 10.1093/nar/17.11.4255 Ferrari, 2006, Characterization of antisense oligonucleotides comprising 2′-deoxy-2′-fluoro-β-D-arabinonucleic acid (FANA): specificity, potency, and duration of activity, Ann. N. Y. Acad. Sci., 1082, 91, 10.1196/annals.1348.032 Miroshnichenko, 2019, Mesyl phosphoramidate antisense oligonucleotides as an alternative to phosphorothioates with improved biochemical and biological properties, Proc. Natl. Acad. Sci. U S A, 116, 1229, 10.1073/pnas.1813376116 Malchère, 2000, A short phosphodiester window is sufficient to direct RNase H-dependent RNA cleavage by antisense peptide nucleic acid, Antisense Nucleic Acid Drug Dev., 10, 463, 10.1089/oli.1.2000.10.463 Prakash, 2004, 2′-O-[2-[N,N-Dimethylamino)oxy]ethyl]-modified oligonucleotides inhibit expression of mRNA in vitro and in vivo, Nucleic Acids Res., 32, 828, 10.1093/nar/gkh220 Fluiter, 2005, On the in vitro and in vivo properties of four locked nucleic acid nucleotides incorporated into an anti-H-Ras antisense oligonucleotide, ChemBioChem, 6, 1104, 10.1002/cbic.200400419 Kupryushkin, 2014, Phosphoryl guanidines: a new type of nucleic acid analogues, Acta Naturae, 6, 116, 10.32607/20758251-2014-6-4-116-118 Stetsenko, 2016 Garafutdinov, 2020, Prevention of DNA multimerization using phosphoryl guanidine primers during isothermal amplification with Bst exo-DNA polymerase, Biochimie, 168, 259, 10.1016/j.biochi.2019.11.013 Chubarov, 2020, Allele-specific PCR for KRAS mutation detection using phosphoryl guanidine modified primers, Diagnostics, 10, 872, 10.3390/diagnostics10110872 Skvortsova, 2019, A new antisense phosphoryl guanidine oligo-2′-O-methylribonucleotide penetrates into intracellular mycobacteria and suppresses target gene expression, Front. Pharmacol., 10, 1049, 10.3389/fphar.2019.01049 Levina, 2017, Impact of delivery method on antiviral activity of phosphodiester, phosphorothioate, and phosphoryl guanidine oligonucleotides in MDCK cells infected with H5N1 bird flu virus, Mol. Biol. (Mosk)., 51, 717, 10.1134/S0026893317040136 Su, 2020, The importance of phosphates for DNA G-quadruplex formation: evaluation of zwitterionic G-rich oligodeoxynucleotides, ChemBioChem, 21, 2455, 10.1002/cbic.202000110 Lomzov, 2019, Diastereomers of a mono-substituted phosphoryl guanidine trideoxyribonucleotide: isolation and properties, Biochem. Biophys. Res. Commun., 513, 807, 10.1016/j.bbrc.2019.04.024 Ambudkar, 1999, Biochemical, cellular, and pharmacological aspects of the multidrug transporter, Annu. Rev. Pharmacol. Toxicol., 39, 361, 10.1146/annurev.pharmtox.39.1.361 Choi, 2005, ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal, Cancer Cell Int, 5, 30, 10.1186/1475-2867-5-30 Stavrovskaya, 2008, Transport proteins of the ABC family and multidrug resistance of tumor cells, Biochem, 73, 592 Kostenko, 2002, Downregulation of PGY1/MDR1 mRNA level in human KB cells by antisense oligonucleotide conjugates. RNA accessibility in vitro and intracellular antisense activity, Biochim. Biophys. Acta - Gene Struct. Expr., 1576, 143, 10.1016/S0167-4781(02)00339-1 Logashenko, 2004, Silencing of MDR 1 gene in cancer cells by siRNA, Nucleosides, Nucleotides and Nucleic Acids, 23, 861, 10.1081/NCN-200026032 Kitamura, 2014, A reagent for safe and efficient diazo-transfer to primary amines: 2-azido-1,3-dimethylimidazolinium hexafluorophosphate, Org. Biomol. Chem., 12, 4397, 10.1039/c4ob00515e Kitamura, 2016, Synthesis of 2-azido-1,3-dimethylimidazolinium hexafluorophosphate (ADMP), 171 Guzaev, 2011, Reactivity of 3H-1,2,4-dithiazole-3-thiones and 3H-1,2-dithiole-3-thiones as sulfurizing agents for oligonucleotide synthesis, Tetrahedron Lett., 52, 434, 10.1016/j.tetlet.2010.11.086 Golyshev, 2021, Effects of phosphoryl guanidine modification of phosphate residues on the structure and hybridization of oligodeoxyribonucleotides, J. Phys. Chem. B, 125, 2841, 10.1021/acs.jpcb.0c10214 Herkt, 2021, Pharmacokinetics and proceedings in clinical application of nucleic acid therapeutics, Mol. Ther., 29, 521, 10.1016/j.ymthe.2020.11.008 Muller, 1995, Evidence for transcriptional control of human mdr1 gene expression by verapamil in multidrug-resistant leukemic cells, Mol. Pharmacol., 47, 51 Prokipcak, 1999, The AU-rich 3’ untranslated region of human MDR1 mRNA is an inefficient mRNA destabilizer, Biochem. Biophys. Res. Commun., 261, 627, 10.1006/bbrc.1999.1101 Richert, 1988, Stability and covalent modification of P-glycoprotein in multidrug-resistant KB cells, Biochemistry, 27, 7607, 10.1021/bi00420a006 Scharner, 2021, Clinical applications of single-stranded oligonucleotides: current landscape of approved and in-development therapeutics, Mol. Ther., 29, 540, 10.1016/j.ymthe.2020.12.022 Kuijper, 2021, Opportunities and challenges for antisense oligonucleotide therapies, J. Inherit. Metab. Dis., 44, 72, 10.1002/jimd.12251 Zhou, 2019, Current RNA-based therapeutics in clinical trials, Curr. Gene Ther., 19, 172, 10.2174/1566523219666190719100526 Smith, 2019, Therapeutic oligonucleotides: state of the art, Annu. Rev. Pharmacol. Toxicol., 59, 605, 10.1146/annurev-pharmtox-010818-021050 Dhuri, 2020, Antisense oligonucleotides: an emerging area in drug discovery and development, J. Clin. Med., 9, 2004, 10.3390/jcm9062004 Letsinger, 1975, Synthesis of phosphoromonoamidate diester nucleotides via the phosphite-azide coupling method, Tetrahedron Lett., 16, 147, 10.1016/S0040-4039(00)72493-2 Anderson, 2021, Towards next generation antisense oligonucleotides: mesylphosphoramidate modification improves therapeutic index and duration of effect of gapmer antisense oligonucleotides, Nucleic Acids Res., 49, 9026, 10.1093/nar/gkab718 Pavlova, 2018, SDS-PAGE procedure: application for characterization of new entirely uncharged nucleic acids analogs, Electrophoresis, 39, 670, 10.1002/elps.201700415 Dyudeeva, 2021, Problems of the synthesis of oligonucleotide derivatives in the realization of the anchimeric effect, Russ. J. Bioorg. Chem., 47, 505, 10.1134/S1068162021020096 Johannes, 2018, Current challenges in delivery and cytosolic translocation of therapeutic RNAs, Nucleic Acid Ther., 28, 178, 10.1089/nat.2017.0716 Cerritelli, 2009, Ribonuclease H: the enzymes in eukaryotes, FEBS J., 276, 1494, 10.1111/j.1742-4658.2009.06908.x Summerton, 1999, Morpholino antisense oligomers: the case for an RNase H-independent structural type, Biochim. Biophys. Acta - Gene Struct. Expr., 1489, 141, 10.1016/S0167-4781(99)00150-5 Mironova, 2006, Animal model of drug-resistant tumor progression, Ann. N. Y. Acad. Sci., 1091, 490, 10.1196/annals.1378.090 Patutina, 2020, Mesyl phosphoramidate backbone modified antisense oligonucleotides targeting miR-21 with enhanced in vivo therapeutic potency, Proc. Natl. Acad. Sci. U S A, 117, 32370, 10.1073/pnas.2016158117 Chelobanov, 2017, New oligodeoxynucleotide derivatives containing N-(methanesulfonyl)-phosphoramidate (mesyl phosphoramidate) internucleotide group, Russ. J. Bioorg. Chem., 43, 664, 10.1134/S1068162017060024 Brand, 2000, Transdermal delivery of antisense compounds, Adv. Drug Deliv. Rev., 44, 51, 10.1016/S0169-409X(00)00083-1 Lebleu, 2008, Cell penetrating peptide conjugates of steric block oligonucleotides, Adv. Drug Deliv. Rev., 60, 517, 10.1016/j.addr.2007.09.002 Negishi, 2018, PMO delivery system using bubble liposomes and ultrasound exposure for Duchenne muscular dystrophy treatment, Methods Mol. Biol., 1687, 185, 10.1007/978-1-4939-7374-3_13 Moulton, 2003, HIV Tat peptide enhances cellular delivery of antisense morpholino oligomers, Antisense Nucleic Acid Drug Dev., 13, 31, 10.1089/108729003764097322 Arora, 2002, Transdermal use of phosphorodiamidate morpholino oligomer AVI-4472 inhibits cytochrome P450 3A2 activity in male rats, Pharm. Res., 19, 1465, 10.1023/A:1020448430919 Shimojo, 2019, A gapmer antisense oligonucleotide targeting SRRM4 is a novel therapeutic medicine for lung cancer, Sci. Rep., 9, 7618, 10.1038/s41598-019-43100-1 Marrosu, 2017, Gapmer antisense oligonucleotides suppress the mutant allele of COL6A3 and restore functional protein in Ullrich muscular dystrophy, Mol. Ther. - Nucleic Acids, 8, 416, 10.1016/j.omtn.2017.07.006 Mutso, 2015, RNA interference-guided targeting of hepatitis C virus replication with antisense locked nucleic acid-based oligonucleotides containing 8-oxo-dG modifications, PLoS ONE, 10, e0128686, 10.1371/journal.pone.0128686 Takahashi, 2019, Dual mechanisms of action of self-delivering, anti-HIV-1 FANA oligonucleotides as a potential new approach to HIV therapy, Mol. Ther. - Nucleic Acids, 17, 615, 10.1016/j.omtn.2019.07.001 Kumar, 2013, Anti-SARS coronavirus agents: a patent review (2008-present), Expert Opin. Ther. Pat., 23, 1337, 10.1517/13543776.2013.823159 Patutina, 2018, Peptide-oligonucleotide conjugates exhibiting pyrimidine-X cleavage specificity efficiently silence miRNA target acting synergistically with RNase, H. Sci. Rep., 8, 14990 Markov, 2015, Multicomponent mannose-containing liposomes efficiently deliver RNA in murine immature dendritic cells and provide productive anti-tumour response in murine melanoma model, J. Control Release, 213, 45, 10.1016/j.jconrel.2015.06.028 Mironova, 2007, RNase T1 mimicking artificial ribonuclease, Nucleic Acids Res., 35, 2356, 10.1093/nar/gkm143