Khả năng chống oxy hóa của các hợp chất phenolic chiết xuất từ Lolium perenne và Lolium arundinaceum bị nhiễm Neotyphodium (Hypocreales: Clavicipitaceae)

Springer Science and Business Media LLC - Tập 34 - Trang 827-833 - 2011
A. Qawasmeh1, A. Raman2,1, W. Wheatley1, H. Nicol1
1School of Agricultural and Wine Sciences, Charles Sturt University, Orange, Australia
2EH Graham Centre for Agricultural Innovation, Wagga Wagga, Australia

Tóm tắt

Các thành viên của nấm nội sinh Neotyphodium nhiễm Lolium perenne L. và Lolium arundinaceum Darb. đã làm thay đổi quá trình tổng hợp của một số metabolite. Trong nghiên cứu này, chúng tôi đã xác định khả năng chống oxy hóa của các hợp chất phenolic từ L. perenne và L. arundinaceum bị nhiễm Neotyphodium lolii (Latch, Christensen et Samuels) và Neotyphodium coenophialum (Morgan-Jones et Gams) Glenn, Bacon et Hanlin, tương ứng. Khả năng chống oxy hóa được xác định bằng cách đo khả năng tiêu diệt của các chiết xuất methanol trong nước đối với gốc tự do DPPH (2,2-diphenyl-1-picrylhydrazyl). L. perenne bị nhiễm bằng dòng nấm nội sinh ‘dạng hoang dã’ cho thấy khả năng tiêu diệt cao nhất, trong khi các mẫu không nhiễm nấm cho thấy khả năng thấp nhất. Những mẫu bị nhiễm dòng nấm ‘mới’ AR1 và AR37 cho thấy khả năng trung bình. L. arundinaceum bị nhiễm dòng nấm ‘mới’ AR542 cho thấy khả năng tiêu diệt thấp hơn so với các mẫu không nhiễm nấm, bất kể nguồn gốc giống L. arundinaceum. Các mẫu L. arundinaceum ở vùng Địa Trung Hải và Lục địa không bị nhiễm nấm cho thấy khả năng tiêu diệt DPPH cao hơn so với các mẫu bị nhiễm nấm ở vùng Địa Trung Hải và Lục địa. Những kết quả này gợi ý rằng nấm nội sinh đã làm thay đổi khả năng chống oxy hóa của cỏ.

Từ khóa

#Neotyphodium #Lolium perenne #Lolium arundinaceum #khả năng chống oxy hóa #hợp chất phenolic #DPPH

Tài liệu tham khảo

Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 51:167–173 Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Curr Sci 82:1227–1238 Assuero SG, Matthew C, Kemp P, Barker DJ, Mazzanti A (2002) Effects of water deficit on mediterranean and temperate cultivars of tall fescue. Aust J Agric Res 53:29–40 Bidar G, Garcon G, Pruvot C, Dewaele D, Cazier F, Douay F, Shirali P (2007) Behaviour of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: plant metal concentration and phytotoxicity. Environ Poll 147:546–553 Bonnet M, Camares O, Veisseire P (2000) Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne L. cv Apollo). J Exp Bot 51:945–953 Champagnat P, Heitz A, Carnat A, Fraisse D, Carnat AP, Lamaison JL (2008) Flavonoids from Vetiveria zizanioides and Vetiveria nigritana (Poaceae). Biochem Syst Ecol 36:68–70 Grace S (2005) Phenolics as antioxidants. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell, New York, pp 141–168 Hahn H, Huth W, Schoberlein W, Diepenbrock W (2003) Detection of endophytic fungi in Festuca spp. by means of tissue immunoassay. Plant Breed 122:217–222 Hoveland CS (1993) Importance and economic significance of the Acremonium endophytes to performance of animals and grass plant. Agric Ecosyst Environ 44:3–12 Hume DE, Ryan DL, Cooper BM, Popay AJ (2007) Agronomic performance of AR37-infected ryegrass in northern New Zealand. Proc NZ Grassl Assoc 69:201–205 Jiang YW, Huang BR (2001) Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Sci 41:436–442 Malcata FX, Giao MS, Gonzalez-Sanjose ML, Rivero-Perez MD, Pereira CI, Pintado ME (2007) Infusions of Portuguese medicinal plants: dependence of final antioxidant capacity and phenol content on extraction features. J Sci Food Agric 87:2638–2647 Malinowski DP, Belesky DP (2000) Adaptation of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940 Malinowski DP, Belesky DP (2006) Ecological importance of Neotyphodium spp. grass endophytes in agroecosystems. Grassl Sci 52:1–14 Malinowski DP, Alloush GA, Belesky DP (1998) Evidence for chemical changes on the root surface of tall fescue in response to infection with the fungal endophyte Neotyphodium coenophialum. Plant Soil 205:1–12 Malinowski DP, Kigel J, Pinchak WE (2009) Water deficit, heat tolerance, and persistence of summer-dormant grasses in the US southern plains. Crop Sci 49:2363–2370 Michalska A, Ceglinska A, Amarowicz R, Piskula MK, Szawara–Nowak D, Zielinski H et al (2007) Antioxidant contents and antioxidative properties of traditional rye breads. J Agric Food Chem 55:734–740 Obied HK, Bedgood DR, Prenzler PD, Robards K (2008) Effect of processing conditions, prestorage treatment, and storage conditions on the phenol content and antioxidant activity of olive mill waste. J Agric Food Chem 56:3925–3932 Orozco-Cardenas M, Ryan CA (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. P Natl Acad Sci 96:6553–6557 Ponce MA, Bompadre MJ, Scervino JM, Ocampo JA, Chaneton EJ, Godeas AM (2009) Flavonoids benzoic acids and cinnamic acids isolated from shoots and roots of Italian rye grass (Lolium multiflorum Lam.) with and without endophyte association and arbuscular mycorrhizal fungus. Biochem Syst Ecol 37:245–253 Popay AJ, Hume DE, Baltus JG, Latch GCM, Tapper BA, Lyons TB, Cooper BM, Pennell C, Erens JPJ, Marshall SL (1999) Ryegrass endophyte: an essential New Zealand symbiosis. In: Woodfield DR, Matthew C (eds) Proceedings of a New Zealand Grassland Association Symposium, New Zealand Grassland Association, Auckland pp 113–122 Qawasmeh A, Bourke CA, Lee S, Gray M, Wheatley WM, Sucher NJ, Raman A (2011) GC–MS analysis of volatile secondary metabolites in ‘Mediterranean’ and ‘Continental’ Festuca arundinacea (Poaceae) infected with the fungal endophyte Neotyphodium coenophialum strain AR542. Acta Chromatogr 24:621–628 Rasmussen S, Parsons AJ, Fraser K, Xue H, Newman JA (2008) Metabolic profiles of Lolium perenne are differentially affected by nitrogen supply, carbohydrate content, and fungal endophyte infection. Plant Physiol 146:1440–1453 Salopek-Sondi B, Piljac-Žegarac J, Magnus V, Kopjar N (2010) Free radical scavenging activity and DNA damaging potential of auxins IAA and 2-methyl-IAA evaluated in human neutrophils by the alkaline comet assay. J Biochem Mol Toxicol 24:165–173 Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686 Siegel MR, Latch GC, Johnson MC (1985) Acremonium fungal endophytes of tall fescue and perennial ryegrass: significance and control. Plant Dis 69:179–188 Torres MS, White JF, Zhang X, Hinton DM, Bacon WC (2011) Endophyte-mediated adjustments in host morphology and physiology and effects on host fitness traits in grasses. Fungal Ecol. doi:10.1016/j.funeco.2011.05.006 Treutter D (2006) Significance of flavonoids in plant resistance: a review. Environ Chem Lett 4:147–157 van de Staaij J, de Bakker NVJ, Oosthoek A, Broekman R, van Beem A, Stroetenga M, Aerts R, Rozema J (2002) Flavonoid concentrations in three grass species and a sedge grown in the field and under controlled environment conditions in response to enhanced UV-B radiation. J Photochem Photobiol (B Biol) 66:21–29 White JF, Torres MS (2010) Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? Physiol Plant 138(4):440–446