Antioxidant defense system in leaves of Indian mustard (Brassica juncea) and rape (Brassica napus) under cadmium stress
Tóm tắt
Từ khóa
Tài liệu tham khảo
Asada K (1994) Production and action of active oxygen species in photosynthetic tissue. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense system in plants. CRC Press, Boca Raton, FL, pp 77–104
Bañuelos GS, Meek DW (1990) Accumulation of selenium in plants grown on selenium-treated soil. J Environ Qual 19:772–777
Ben Youssef N, Nouairi I, Temime SB, Taamalli W, Zarrouk M, Ghorbal MH et al (2005) Cadmium effects on lipid metabolism of rape (Brassica napus L.). C R Biol 328:745–757. doi: 10.1016/j.crvi.2005.05.010
Bhargava P, Srivastava AK, Urmil S, Rai LC (2005) Phytochelatin plays a role in UV-B tolerance in N2-fixing cyanobacterium Anabaena doliolum. J Plant Physiol 162:1220–1225. doi: 10.1016/j.jplph.2004.12.006
Birecka H, Garraway MO (1978) Corn leaf isoperoxidase reaction to mechanical injury and infection with Helminthosporium maydis. Effects of cycloheximide. Plant Physiol 61:561–566
Boominathan R, Doran PM (2003) Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotechnol Bioeng 83:158–167. doi: 10.1002/bit.10656
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254. doi: 10.1016/0003-2697(76)90527-3
Cakmak I (2000) Role of zinc in protecting plant cells from reactive oxygen species. New Phytol 146:185–205. doi: 10.1046/j.1469-8137.2000.00630.x
Cakmak I, Horst WJ (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83:463–468. doi: 10.1111/j.1399-3054.1991.tb00121.x
Castillo FJ (1986) Extracellular peroxidases as markers of stress? In: Greppin H, Penel C, Gaspar T (eds) Molecular and physiological aspects of plant peroxidases. University of Geneva Press, Geneva, pp 419–426
Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486. doi: 10.1007/s004250000458
Cobbett CS, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Physiol Plant Mol Biol 53:159–182. doi: 10.1146/annurev.arplant.53.100301.135154
Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832. doi: 10.1104/pp.123.3.825
Cosio C, DeSantis L, Frey B, Diallo S, Keller C (2005) Distribution of cadmium in leaves of Thlaspi caerulescens. J Exp Bot 56:765–775. doi: 10.1093/jxb/eri062
Chaoui A, Mazhoudi S, Ghorbal MH, El Ferjani E (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzymes activities in bean (Phaseolus vulgaris L.). Plant Sci 127:139–147. doi: 10.1016/S0168-9452(97)00115-5
Cho UH, Seo NH (2005) Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci 168:113–120. doi: 10.1016/j.plantsci.2004.07.021
Davis RD (1984) Cadmium—a complex environmental problem: cadmium in sludge used as fertilizer. Experientia 40:117–126. doi: 10.1007/BF01963574
Demiral T, Türkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53:247–257. doi: 10.1016/j.envexpbot.2004.03.017
Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1109. doi: 10.1093/jexbot/52.358.1101
Dong J, Wu FB, Zhang GP (2006) Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Chemosphere 64:1659–1666. doi: 10.1016/j.chemosphere.2006.01.030
Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77. doi: 10.1016/0003-9861(59)90090-6
Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydron peroxide and glutathione associated mechanism of acclamatory stress tolerance and signaling. Physiol Plant 100:241–254. doi: 10.1111/j.1399-3054.1997.tb04780.x
Gupta M, Tripathi RD, Rai UN, Chandra P (1998) Role of glutathione and phytochelatin in Hydrilla verticillata Royle and Valliseria spiralis L. under mercury stress. Chemosphere 37:785–800. doi: 10.1016/S0045-6535(98)00073-3
Gupta M, Tripathi RD, Rai UN, Haq W (1999) Lead induced synthesis of metal binding peptides (phytochelatins) in submerged macrophyte Vallisneria spiralis L. Physiol Mol Biol Plants 5:173–180
Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11. doi: 10.1093/jexbot/53.366.1
Halliwell B, Foyer CH (1978) Properties and physiological function of a glutathione reductase purified from spinach leaves by affinity chromatography. Planta 139:9–17. doi: 10.1007/BF00390803
Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine, 2nd edn edn. Clarendon Press, Oxford, UK, pp 110–119
Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetic and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. doi: 10.1016/0003-9861(68)90654-1
Hegedus A, Erdei S, Horvath G (2001) Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Sci 160:1085–1093. doi: 10.1016/S0168-9452(01)00330-2
Heiss S, Wachter A, Bogs J, Cobbett C, Rausch T (2003) Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure. J Exp Bot 54:1833–1839. doi: 10.1093/jxb/erg205
Heyes RB (1997) The carcinogenicity of metals in humans. Cancer Causes Control 8:371–385. doi: 10.1023/A:1018457305212
Hissin PJ, Hilf R (1976) A fluorimetric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226. doi: 10.1016/0003-2697(76)90326-2
Howlett NG, Avery SV (1997) Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation. Appl Environ Microbiol 63:2971–2976
Jackson PJ, Delhaize E, Kuske CR (1992) Biosynthesis and metabolic roles of cadystins (γ-EC)n-G and their precursors in Datura innoxia. Plant Soil 146:281–289. doi: 10.1007/BF00012022
Krämer U, Smith RD, Wenzel WW, Raskin I, Salt DE (1997) The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense Hàlàcsy. Plant Physiol 115:1641–1650
Kufel I (1991) Lead and molybdenum in reed and cattail—open versus closed type of metal cycling. Aquat Bot 40:275–288. doi: 10.1016/0304-3770(91)90063-B
Kumar PBA, Dushenkov V, Motto J, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238. doi: 10.1021/es00005a014
Küpper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentaion of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84. doi: 10.1007/s004250000366
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi: 10.1038/227680a0
Larson RA (1988) The antioxidants of higher plants. Phytochem 27:969–978. doi: 10.1016/0031-9422(88)80254-1
Larsson EH, Bornman JF, Asp H (1998) Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence, growth and nutrient content in Brassica napus. J Exp Bot 49:1031–1039. doi: 10.1093/jexbot/49.323.1031
Li L, He Z, Pandey GK, Tsuchiya T, Luan S (2002) Functional cloning and characterization of a plant efflux carrier for multidrug and heavy metal detoxification. J Biol Chem 277:5360–5368. doi: 10.1074/jbc.M108777200
Lin R, Xiaorong W, Yi L, Wenchao D, Hongyan G, Daqiang Y (2007) Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings (Triticum aestivum L.). Chemosphere 69:89–98. doi: 10.1016/j.chemosphere.2007.04.041
Ma JF, Ueno D, Zhao FJ, McGrath SP (2005) Subcellular localisation of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Planta 220:731–736. doi: 10.1007/s00425-004-1392-5
Mazhoudi S, Chaoui A, Ghorbal MH, Ferjani EF (1997) Response of antioxidant enzymes to excess copper in tomato (Lycopersicon esculentum L. Mill). Plant Sci 127:129–137. doi: 10.1016/S0168-9452(97)00116-7
McCord JM, Fridovich I (1969) Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055
McGrath SP, Zhao FJ, Lombi E (2001) Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232:207–214. doi: 10.1023/A:1010358708525
Mishra S, Srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MNV (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Biochem 44:25–37. doi: 10.1016/j.plaphy.2006.01.007
Nakano Y, Asada K (1987) Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol 28:131–140
Noctor G, Foyer C (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279. doi: 10.1146/annurev.arplant.49.1.249
Nouairi I, Ben Ammar W, Ben Youssef N, Douja Daoud BM, Ghorbel MH, Zarrouk M (2006a) Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Sci 170:511–519. doi: 10.1016/j.plantsci.2005.10.003
Nouairi I, Ghnaya T, Ben Youssef N, Zarrouk M, Ghorbel MH (2006b) Changes in content and fatty acid profiles of total lipids of two halophytes: Sesuvium portuacastrum and Mesembryanthenum crystalinum under cadmium stress. J Plant Physiol 163:1198–1202. doi: 10.1016/j.jplph.2005.08.020
Ouariti O, Boussama N, Zarrouk M, Cherif A, Ghorbal MH (1997) Cadmium- and copper-induced changes in tomato membrane lipids. Phytochem 7:1343–1350. doi: 10.1016/S0031-9422(97)00159-3
Pawlik-Skowronska B (2002) Correlations between toxic Pb effects and production of Pb-induced thiol peptides in the microalga Stichococcus bacillaris. Environ Pollut 119:119–127. doi: 10.1016/S0269-7491(01)00280-9
Prasad MNV (1995) Cadmium toxicity and tolerance in higher plants. Environ Exp Bot 35:525–545. doi: 10.1016/0098-8472(95)00024-0
Qadir S, Qureshi MI, Javed S, Abdin MZ (2004) Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress. Plant Sci 167:1171–1181. doi: 10.1016/j.plantsci.2004.06.018
Radotic K, Ducic T, Mutavdzic D (2000) Changes in peroxidase activity and sisozymes in spruce needles after exposure to different concentrations of cadmium. Environ Exp Bot 44:105–113. doi: 10.1016/S0098-8472(00)00059-9
Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226. doi: 10.1016/S0958-1669(97)80106-1
Rauser WE (1999) Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin and metallothioneins. Cell Biochem Biophys 32:19–48. doi: 10.1007/BF02738153
Salt DE, Smith R, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668. doi: 10.1146/annurev.arplant.49.1.643
Salt DE, Rauser WE (1995) Mg ATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301
Sandalio LM, Dalurzo HC, Gómez M, Romero-Puertas MC, Del Río LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126
Sanita di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130. doi: 10.1016/S0098-8472(98)00058-6
Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL et al (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol 127:887–898. doi: 10.1104/pp.127.3.887
Smeets K, Cuypers A, Lambrechts A, Semane B, Hoet P, Laere A et al (2005) Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiol Biochem 43:437–444. doi: 10.1016/j.plaphy.2005.03.007
Speiser DM, Abrahamson SL, Banuoelos G, Ow DW (1992) Brassica juncea produces a phtyochelatin–cadmium–sulfide complex. Plant Physiol 99:817–821
Srivastava S, Tripathi RD, Dwivedi UN (2004) Synthesis of phytochelatins and modulation of antioxidants in response to cadmium stress in Cuscuta reflexa–an angiospermic parasite. J Plant Physiol 161:665–674. doi: 10.1078/0176-1617-01274
Świergosz-Kowalewska R, Bednarska A, Kafel A (2006) Glutathione levels and enzyme activity in the tissues of bank vole Clethrionomys glareolus chronically exposed to a mixture of metal contaminants. Chemosphere 65:963–974. doi: 10.1016/j.chemosphere.2006.03.040
Tripathi RD, Rai UN, Gupta M, Chandra P (1996) Induction of phytochelatins in Hydrilla verticillata (l.f.) Royle under cadmium stress. Bull Environ Contam Toxicol 56:505–512. doi: 10.1007/s001289900073
Vögeli-Lange R, Wagner GJ (1990) Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves. Plant Physiol 92:1086–1093