Antioxidant Activity and Phytochemical Characterization of Senecio clivicolus Wedd.

Springer Science and Business Media LLC - Tập 23 Số 10 - Trang 2497
Immacolata Faraone1, Dilip Rai2, Lucia Chiummiento1, Eloy Fernández3, Alka Choudhary2, Flavio Prinzo1, Luigi Milella1
1Department of Science, University of Basilicata, 85100, Potenza, Italy
2Teagasc Food Research Centre, Ashtown, Dublin D15KN3K, Ireland
3Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague 6, Suchdol, Czech Republic

Tóm tắt

Antioxidant phytochemicals play a key role in oxidative stress control and in the prevention of related disorders, such as premature aging, degenerative diseases, diabetes, and cancer. The aim of this study was to investigate the potential antioxidant activity and the phytochemical profile of Senecio clivicolus Wedd., a perennial shrub, belonging to the Asteraceae family. Despite the wide interest of this family, this specie has not been investigated yet. S. clivicolus aerial parts were extracted with 96% ethanol. Then, the ethanol extract was fractionated by liquid/liquid extraction using an increasing solvents polarity. Total polyphenol and terpenoid contents were measured. Moreover, the antioxidant activity was evaluated by six different complementary in vitro assays. The Relative Antioxidant Capacity Index (RACI) was used to compare data obtained by different tests. The sample showing the highest RACI was subjected to characterization and quantitation of its phenolic composition using LC-MS/MS analysis. The ethyl acetate fraction, investigated by LC-MS/MS analysis, showed 30 compounds, most of them are chlorogenic acid and flavonoid derivatives. To the best of our knowledge, this is the first report about the evaluation of antioxidant activity and phytochemical profile of S. clivicolus, underlying the importance of this species as a source of health-promoting phytochemicals.

Từ khóa


Tài liệu tham khảo

2011, In vitro antioxidant activity of coumarin compounds by DPPH, super oxide and nitric oxide free radical scavenging methods, J. Adv. Pharm. Educ. Res., 1, 52

Zidorn, 2018, Methanol extracts of 28 Hieracium species from the Balkan Peninsula–Comparative LC–MS analysis, chemosystematic evaluation of their flavonoid and phenolic acid profiles and antioxidant potentials, Phytochem. Anal., 29, 30, 10.1002/pca.2712

Pizarro, 2009, Oxidative stress-induced DNA damage and cell cycle regulation in B65 dopaminergic cell line, Free Radic. Res., 43, 985, 10.1080/10715760903159188

Scalbert, 2005, Dietary polyphenols and the prevention of diseases, Crit. Rev. Food Sci., 45, 287, 10.1080/1040869059096

Sakagami, 1997, Possible role of radical intensity and oxidation potential for gallic acid-induced apoptosis, Anticancer Res., 17, 377

Forman, 2014, How do nutritional antioxidants really work: Nucleophilic tone and para-hormesis versus free radical scavenging in vivo, Free Radic. Biol. Med., 66, 24, 10.1016/j.freeradbiomed.2013.05.045

Araujo, N., Mü Ller, R., Nowicki, C., and Ibisch, P. (2005). Análisis de Vacíos de Representatividad del Sistema Nacional de Áreas Protegidas, FAN.

Deharo, 2001, A search for natural bioactive compounds in Bolivia through a multidisciplinary approach. Part V. Evaluation of the antimalarial activity of plants used by the Tacana Indians, J. Ethnopharmacol., 77, 91, 10.1016/S0378-8741(01)00270-7

Sauvain, 2000, A search for natural bioactive compounds in Bolivia through a multidisciplinary approach: Part I. Evaluation of the antimalarial activity of plants used by the Chacobo Indians, J. Ethnopharmacol., 69, 127, 10.1016/S0378-8741(99)00148-8

Bourdy, 2004, A search for natural bioactive compounds in Bolivia through a multidisciplinary approach: Part VI. Evaluation of the antimalarial activity of plants used by Isoceno-Guaranı Indians, J. Ethnopharmacol., 93, 269, 10.1016/j.jep.2004.03.045

Vidaurre, 2005, An ethnobotanical survey of medicinal plants commercialized in the markets of La Paz and El Alto, Bolivia, J. Ethnopharmacol., 97, 337, 10.1016/j.jep.2004.11.022

Thomas, 2011, Ethnomedicinal practices and medicinal plant knowledge of the Yuracarés and Trinitarios from indigenous territory and national park Isiboro-Sécure, Bolivian Amazon, J. Ethnopharmacol., 133, 153, 10.1016/j.jep.2010.09.017

Hajdu, 2012, An ethnopharmacological survey of the traditional medicine utilized in the community of Porvenir, Bajo Paraguá Indian Reservation, Bolivia, J. Ethnopharmacol., 139, 838, 10.1016/j.jep.2011.12.029

Floegel, 2011, Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods, J. Food Comp. Anal., 24, 1043, 10.1016/j.jfca.2011.01.008

Fournet, 1994, Leishmanicidal and trypanocidal activities of Bolivian medicinal plants, J. Ethnopharmacol., 41, 19, 10.1016/0378-8741(94)90054-X

Bustamante, G., Escalante, L., Mejia, U., Valdivia, M., and Soria, I. (2001). Estudio Etnobotánico y Actividad Antimicrobiana de las Plantas Medicinales de los Valles Bajos de Cochabamba, Universidad Mayor de San Simón.

Pelser, 2007, An ITS phylogeny of tribe Senecioneae (Asteraceae) and a new delimitation of Senecio L., Taxon, 56, 1077, 10.2307/25065905

Aguilar, 2012, The sesquiterpenes β-caryophyllene and caryophyllene oxide isolated from Senecio salignus act as phytogrowth and photosynthesis inhibitors, Molecules, 17, 1437, 10.3390/molecules17021437

Oladipupo, 2009, Chemical composition of the essential oils of the flowers, leaves and stems of two Senecio polyanthemoides Sch. Bip. samples from South Africa, Molecules, 14, 2077, 10.3390/molecules14062077

Balzaretti, 2000, Variation in the composition of the essential oil of Senecio filaginoides DC, Molecules, 5, 459, 10.3390/50300459

Krasovskaya, 1989, Natural antioxidants. Furanoeremophilanes from Cacalia roots, Chem. Nat. Compd., 25, 545, 10.1007/BF00598072

Milella, 2014, Antioxidant and free radical-scavenging activity of constituents from two Scorzonera species, Food Chem., 160, 298, 10.1016/j.foodchem.2014.03.097

Saltos, 2015, Inhibitors of α-amylase and α-glucosidase from Andromachia igniaria Humb. & Bonpl, Phytochem. Lett., 14, 45, 10.1016/j.phytol.2015.08.018

Fraige, 2018, Dereplication by HPLC-DAD-ESI-MS/MS and screening for biological activities of Byrsonima species (Malpighiaceae), Phytochem. Anal., 29, 196, 10.1002/pca.2734

Sterner, 2013, Furanoeremophilanes from Senecio clivicolus Wedd., Revista Boliviana de Química, Volume 30, 80

Lienou, 2010, Effect of ethanolic extract of Senecio biafrae on puberty onset and fertility in immature female rat, Cameroon J. Exp. Biol., 6, 101

Hassan, 2012, Chemical constituents and biological activities of Senecio aegyptius var, discoideus Boiss. J. Biosci. C, 67, 144

Conforti, 2006, Antioxidant and cytotoxic activities of methanolic extract and fractions from Senecio gibbosus subsp, gibbosus (GUSS) DC. Nat. Prod. Res., 20, 805, 10.1080/14786410500277761

Hariprasath, 2012, Gastroprotective effect of Senecio candicans DC on experimental ulcer models, J. Ethnopharmacol., 140, 145, 10.1016/j.jep.2012.01.002

Saeed, N., Khan, M.R., and Shabbir, M. (2012). Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L.. BMC Complement. Altern. Med., 12.

Saada, M., Falleh, H., Catarino, M.D., Cardoso, S.M., and Ksouri, R. (2018). Plant growth modulates metabolites and biological activities in Retama raetam (Forssk.) Webb. Molecules, 23.

Nakamura, 2017, Impact of different partitioned solvents on chemical composition and bioavailability of Sasa quelpaertensis Nakai leaf extract, J. Food Drug Anal., 25, 316, 10.1016/j.jfda.2016.08.006

Sytar, O., Bośko, P., Živčák, M., Brestic, M., and Smetanska, I. (2018). Bioactive phytochemicals and antioxidant properties of the grains and sprouts of colored wheat genotypes. Molecules, 23.

Mariod, 2008, Fatty acids, tocopherols, sterols, phenolic profiles and oxidative stability of Cucumis melo var, agrestis oil. J. Food Lip., 15, 56, 10.1111/j.1745-4522.2007.00102.x

Conforti, 2006, Biological properties of different extracts of two Senecio species, Int. J. Food Sci. Nutr., 57, 1, 10.1080/09637480500131236

Hossain, 2010, Characterization of phenolic composition in Lamiaceae spices by LC-ESI-MS/MS, J. Agric. Food Chem., 58, 10576, 10.1021/jf102042g

Wang, 1999, Novel antioxidant compounds from Tart Cherries (Prunus c erasus), J. Nat. Prod., 62, 86, 10.1021/np980268s

McDonald, 2001, Phenolic content and antioxidant activity of olive extracts, Food Chem., 73, 73, 10.1016/S0308-8146(00)00288-0

Hung, 2006, Antioxidant activity of caffeoyl quinic acid derivatives from the roots of Dipsacus asper Wall, J. Ethnopharmacol., 108, 188, 10.1016/j.jep.2006.04.029

Yang, 2008, In vitro antioxidant properties of rutin, LWT-Food Sci. Technol., 41, 1060, 10.1016/j.lwt.2007.06.010

Razavi, 2009, Biological activity of quercetin-3-O-glucoside, a known plant flavonoid, Russ. J. Bioorg. Chem., 35, 376, 10.1134/S1068162009030133

Naveed, 2018, Chlorogenic acid (CGA): A pharmacological review and call for further research, Biomed. Pharmacother., 97, 67, 10.1016/j.biopha.2017.10.064

Han, 2008, Characterization of phenolic compounds in the Chinese herbal drug Artemisia annua by liquid chromatography coupled to electrospray ionization mass spectrometry, J. Pharm. Biomed. Anal., 47, 516, 10.1016/j.jpba.2008.02.013

Clifford, 2003, Hierarchical scheme for LC-MSn identification of chlorogenic acids, J. Agric. Food Chem., 51, 2900, 10.1021/jf026187q

Alvarez, 1991, Quinovic acid glycosides from Uncaria guianensis, Phytochemistry, 30, 1635, 10.1016/0031-9422(91)84223-F

Jaiswal, 2011, Identification and characterization of two new derivatives of chlorogenic acids in Arnica (Arnica montana L.) flowers by high-performance liquid chromatography/tandem mass spectrometry, J. Agric. Food Chem., 59, 4033, 10.1021/jf103545k

Ibdah, 2003, A novel Mg2+-dependent O-methyltransferase in the phenylpropanoid metabolism of Mesembryanthemum crystallinum, J. Biol. Chem., 278, 43961, 10.1074/jbc.M304932200

Song, 2016, Polyphenolic profile and antioxidant effects of various parts of Artemisia annua L., Biomed. Chromatogr., 30, 588, 10.1002/bmc.3587

Schieber, 2002, Detection of isorhamnetin glycosides in extracts of apples (Malus domestica cv.“Brettacher”) by HPLC-PDA and HPLC-APCI-MS/MS, Phytochem. Anal., 13, 87, 10.1002/pca.630

Carazzone, 2013, Identification of phenolic constituents in red chicory salads (Cichorium intybus) by high-performance liquid chromatography with diode array detection and electrospray ionisation tandem mass spectrometry, Food Chem., 138, 1062, 10.1016/j.foodchem.2012.11.060

Krzyzanowska-Kowalczyk, J., Pecio, Ł., Mołdoch, J., Ludwiczuk, A., and Kowalczyk, M. (2018). Novel phenolic constituents of Pulmonaria officinalis L. LC-MS/MS Comparison of Spring and Autumn metabolite profiles. Molecules, 23.

Todaro, 2017, Effects of thermo-vacuum treatment on secondary metabolite content and antioxidant activity of poplar (Populus nigra L.) wood extracts, Ind. Crops Prod., 109, 384, 10.1016/j.indcrop.2017.08.052

Ghorai, N., Chakraborty, S., Gucchait, S., Saha, S.K., and Biswas, S. (2012). Estimation of total Terpenoids concentration in plant tissues using a monoterpene, linalool as standard reagent. Protoc. Exch., 5.

Armentano, M.F., Bisaccia, F., Miglionico, R., Russo, D., Nolfi, N., Carmosino, M., Andrade, P.B., Valentão, P., Diop, M.S., and Milella, L. (2015). Antioxidant and proapoptotic activities of Sclerocarya birrea [(A. Rich.) Hochst.] methanolic root extract on the hepatocellular carcinoma cell line HepG2. Biomed. Res. Int., 2015.

Russo, 2015, Evaluation of antioxidant, antidiabetic and anticholinesterase activities of Smallanthus sonchifolius landraces and correlation with their phytochemical profiles, Int. J. Mol. Sci., 16, 17696, 10.3390/ijms160817696

Dekdouk, N., Malafronte, N., Russo, D., Faraone, I., De Tommasi, N., Ameddah, S., Severino, L., and Milella, L. (2015). Phenolic compounds from Olea europaea L. possess antioxidant activity and inhibit carbohydrate metabolizing enzymes in vitro. Evid. Based Complement. Alternat. Med., 2015.

Fidelis, Q.C., Faraone, I., Russo, D., Aragão Catunda, F.E., Vignola, L., de Carvalho, M.G., de Tommasi, N., and Milella, L. (2018). Chemical and biological insights of Ouratea hexasperma (A. St.-Hil.) Baill.: A source of bioactive compounds with multifunctional properties. Nat. Prod. Res., 1–4.

MikaMi, 2009, Development and validation of a microplate-based β-carotene bleaching assay and comparison of antioxidant activity (AOA) in several crops measured by β-carotene bleaching, DPPH and ORAC assays, Food Sci. Technol. Res., 15, 171, 10.3136/fstr.15.171

Rico, 2018, Characterization and in vitro evaluation of seaweed species as potential functional ingredients to ameliorate metabolic syndrome, J. Funct. Foods, 46, 185, 10.1016/j.jff.2018.05.010

Choudhary, 2018, HPLC-ESI-MS/MS characterisation of metabolites produced by Pseudovibrio sp. W64, a marine sponge-derived bacterium isolated from Irish waters, Rapid Commun. Mass Spectrom., 32, 1737, 10.1002/rcm.8226