Hoạt động chống loãng xương và chống oxy hóa của các diterpenoid từ các loại san hô mềm Việt Nam Sinularia maxima và Lobophytum crassum

Springer Science and Business Media LLC - Tập 24 - Trang 3551-3560 - 2015
Nguyen Phuong Thao1,2, Bui Thi Thuy Luyen1, Sang Hyun Lee3, Hae Dong Jang3, Phan Van Kiem2, Chau Van Minh2, Young Ho Kim1
1College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
2Institute of Marine Biochemistry (IMBC), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
3Department of Food and Nutrition, Hannam University, Daejeon, Republic of Korea

Tóm tắt

Các sinh vật biển sở hữu tiềm năng sinh học với hứa hẹn dược phẩm to lớn. Mục đích của nghiên cứu hiện tại là điều tra hoạt động chống oxy hóa (khả năng quét gốc peroxyl và khả năng giảm) và hoạt động chống loãng xương của các hợp chất được phân lập (1–26) từ các loại san hô mềm Sinularia maxima và Lobophytum crassum trên các tế bào tiền tạo xương MC3T3-E1 và các tế bào tiền hủy xương RAW 264.7. Trong số các hợp chất được phân lập, 7, 9, 17, 18, và 20 (10.0 μM) đã thể hiện khả năng quét gốc peroxyl đáng kể, với giá trị TE dao động từ 4.00 ± 0.14 đến 9.06 ± 0.33 μM. Ngoài ra, các hợp chất 1, 5, 7, 20, và 24 đã kích thích đáng kể sự phân hóa của các tế bào tiền tạo xương MC3T3-E1 bằng cách tăng cường tổng hợp collagen và/hoặc chức năng khoáng hóa của các tế bào tạo xương, trong khi các hợp chất 1, 5–8, 12, 14–22, 24, và 26 cho thấy sự ức chế đáng kể TRAP trong các tế bào hủy xương RAW 264.7 được kích thích bởi ligand NF-κB, với giá trị dao động từ 99.11 ± 1.36 đến 61.54 ± 1.61 %. Những kết quả này cho thấy rằng các loại san hô mềm S. maxima và L. crassum là nguồn tài nguyên tuyệt vời trong số các động vật không xương sống biển có khả năng chống oxy hóa và chống loãng xương.

Từ khóa

#sinh vật biển #sinh học #chống oxy hóa #chống loãng xương #san hô mềm #Sinularia maxima #Lobophytum crassum #diterpenoid #tế bào tiền tạo xương #tế bào tiền hủy xương

Tài liệu tham khảo

Abdollahi M, Larijani B, Rahimi R, Salari P (2005) Role of oxidative stress in osteoporosis. Therapy 2:787–796 Anjaneyulu ASR, Rao GV (1997) Chemical constituents of the soft coral species of Sarcophyton genus: a review. J Indian Chem Soc 74:272–278 Apak R, Gorinstein S, Böhm V, Schaich KM, Özyürek M, Güçlü K (2013) Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC Technical Report). Pure Appl Chem 85:957–998 Arai M, Shibata Y, Pugdee K, Abiko Y, Ogata Y (2007) Effects of reactive oxygen species (ROS) on antioxidant system and osteoblastic differentiation in MC3T3-E1 cells. IUBMB Life 59:27–33 Aruoma OI, Deiana M, Jenner A, Halliwell B, Kaur H, Banni S, Corongiu FP, Dessí MA, Aeschbach R (1998) Effect of hydroxytyrosol found in extra virgin olive oil on oxidative DNA damage and on low-density lipoprotein oxidation. J Agric Food Chem 46:5181–5187 Bi Y, Nielsen KL, Kilts TM, Yoon A, Karsdal MA, Wimer HF, Greenfield EM, Heegaard AM, Young MF (2006) Biglycan deficiency increases osteoclast differentiation and activity due to defective osteoblasts. Bone 38:778–786 Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342 Brayboy JR, Chen XW, Lee YS, Anderson JJB (2001) The protective effects of Ginkgo biloba extract (EGb 761) against free radical damage to osteoblast-like bone cells (MC3T3-E1) and the proliferative effects on EGb 761 on these cells. Nutr Res 21:1275–1285 Cao G, Prior RL (1998) Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clin Chem 44:1309–1315 Chao CH, Chou KJ, Huang CY, Wen ZH, Hsu CH, Wu YC, Dai CF, Sheu JH (2011) Bioactive cembranoids from the soft coral Sinularia crassa. Mar Drugs 9:1955–1968 Chen Q, Yang L, Zhang G, Wang F (2013) Bioactivity-guided isolation of antiosteoporotic compounds from Ligustrum lucidum. Phytother Res 27:973–979 Cheng SY, Chuang CT, Wang SK, Wen ZH, Chiou SF, Hsu CH, Dai CF, Duh CY (2010) Antiviral and anti-inflammatory diterpenoids from the soft coral Sinularia gyrosa. J Nat Prod 73:1184–1187 Cuong NX, Tuan TA, Kiem PV, Minh CV, Choi EM, Kim YH (2008) New cembranoid diterpenes from the Vietnamese soft coral Sarcophyton mililatensis stimulate osteoblastic differentiation in MC3T3-E1 cells. Chem Pharm Bull 56:988–992 Cuong NX, Thao NP, Luyen BTT, Ngan NTT, Thuy DTT, Song SB, Nam NH, Kiem PV, Kim YH, Minh CV (2014) Cembranoid diterpenes from the soft coral Lobophytum crassum and their anti-inflammatory activities. Chem Pharm Bull 62:203–208 Ellis ZK, Osdoby PC, Li L, Brandi MLML, Osdoby P (1997) A human homolog of the 150 kD avian osteoclast membrane antigen related to superoxide dismutase and essential for bone resorption is induced by developmental agents and opposed by estrogen in FLG 29. Calcif Tissue Int 60:187–193 Fatourechi GE, Khosla S, Sanyal A, Boyle WJ, Lacey DL, Riggs BL (2003) Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest 111:1221–1230 Grote D, Dahse HM, Seifert K (2008) Furanocembranoids from the soft corals Sinularia asterolobata and Litophyton arboreum. Chem Biodivers 5:2449–2456 He L, Lee J, Jang JH, Sakchaisri K, Hwang J, Molstad HJC, Kim KA, Ryoo IJ, Lee HG, Kim SO, Soung NK, Lee KS, Kwon YT, Erikson RL, Ahn JS, Kim BY (2013) Osteoporosis regulation by salubrinal through eIF2α mediated differentiation of osteoclast and osteoblast. Cell Signal 25:552–560 Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856 Kamel HN, Ferreira D, Fernandez LFG, Slattery M (2007) Cytotoxic diterpenoids from the hybrid soft coral Sinularia maxima × Sinularia polydactyla. J Nat Prod 70:1223–1227 Kaur C, Kapoor HC (2001) Antioxidants in fruits and vegetables—the millennium’s health. Int J Food Sci Technol 36:703–725 Kim SN, Kim MH, Min YK, Kim SH (2013) Licochalcone A inhibits the formation and bone resorptive activity of osteoclasts. Cell Biol Int 32:1064–1072 Kousteni S, Bellido T, Plotkin LI, O’Brien CA, Bodenner DL, Han L, Han K, DiGregorio GB, Katzenellenbogen JA, Katzenellenbogen BS, Roberson PK, Weinstein RS, Jilka RL, Manolagas SC (2001) Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104:719–730 Kurihara H, Fukami H, Asami S, Toyoda Y, Nakai M, Shibata H, Yao XS (2004) Effects of oolong tea on plasma antioxidative capacity in mice loaded with restraint stress assessed using the oxygen radical absorbance capacity (ORAC) assay. Biol Pharm Bull 27:1093–1098 Lacey DL, Timms E, Tan HL (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176 Lakshmi V, Kumar R (2009) Metabolites from Sinularia species. Nat Prod Res 23:801–850 Lee SH, Ding Y, Yan XT, Kim YH, Jang HD (2013) Scopoletin and scopolin isolated from Artemisia iwayomogi suppress differentiation of osteoclastic macrophage RAW 264.7 cells by scavenging reactive oxygen species. J Nat Prod 76:615–620 Lo KL, Khalil AT, Kuo YH, Shen YC (2009) Sinuladiterpenes A-F, new cembrane diterpenes from Sinularia flexibilis. Chem Biodivers 6:2227–2235 Loosdrecht AA, Beelen RHJ, Ossenkoppele GJ, Broekhoven MG, Langenhuijsen MMAC (1994) A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. J Immunol Methods 174:311–320 Lu Y, Su JH, Huang CY, Liu YC, Kuo YH, Wen ZH, Hsu CH, Sheu JH (2010) Cembranoids from the soft corals Sinularia granosa and Sinularia querciformis. Chem Pharm Bull 58:464–466 Maggio D, Pierandrei M, Polidori MC, Catani M (2003) Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study. J Clin Endocrinol Metab 88:1523–1527 McCormick RK (2007) Osteoporosis: integrating biomarkers and other diagnostic correlates into the management of bone fragility. Altern Med Rev 12:113–145 Muhammad N, Luke DA, Shuid AN, Mohamed N, Soelaiman IN (2012) Two different isomers of vitamin E prevent bone loss in postmenopausal osteoporosis rat model. Evid Based Complement Alternat Med Article ID 161527:7 Nazrun AS, Norazlina M, Norliza M, Nirwana SI (2011) Tocotrienols as an anti osteoporotic agent: the progress so far. Int J Osteoporos Metab Disord 4:1–14 Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M, Howard L, Hampsch-Woodill M, Huang D, Ou B, Jacob R (2003) Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. J Agric Food Chem 51:3273–3279 Quarles LD, Yohay DA, Lever LW, Caton R, Wenstrup RJ (1992) Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res 7:683–690 Rao, LG and Rao AV (2013) Oxidative stress and antioxidants in the sisk of osteoporosis—role of the antioxidants lycopene and polyphenols. Topics in osteoporosis Rijeka, Croatia: InTech, pp 117–161 Roggia C, Gao Y, Cenci S, Weitzmann MN, Toraldo G, Isaia G, Pacifici R (2001) Up-regulation of TNF-producing T cells in the bone marrow: a key mechanism by which estrogen deficiency induces bone loss in vivo. Proc Natl Acad Sci USA 98:13960–13965 Simon LS (2007) Osteoporosis. Rheum Dis Clin N Am 33:149–176 Soni HK, Kandachia JM, Jani DK, Patel GR (2013) Pharmacological investigation of bonton capsule for anti-osteoporotic activity in ovariectomized rat. Int J Pharm Phytopharmacol Res 3:52–56 Sontakke AN, Tare RS (2002) A duality in the roles of reactive oxygen species with respect to bone metabolism. Clin Chem Acta 318:145 Srinivasan S, Koenigstein A, Joseph J, Sun L, Kalyanaraman B, Zaidi M, Avadhani NG (2010) Role of mitochondrial reactive oxygen species in osteoclast differentiation. Ann NY Acad Sci 1192:245–252 Su JH, Wen ZH (2011) Bioactive cembrane-based diterpenoids from the soft coral Sinularia triangular. Mar Drugs 9:944–951 Su JH, Lin YF, Lu Y, Yeh HC, Wang WH, Fan TY, Sheu JH (2009) Oxygenated cembranoids from the cultured and wild-type soft corals Sinularia flexibilis. Chem Pharm Bull 57:1189–1192 Suh KS, Lee YS, Kim YS, Choi EM (2013) Sciadopitysin protects osteoblast function via its antioxidant activity in MC3T3-E1 cells. Food Chem Toxicol 58:220–227 Thao NP, Nam NH, Cuong NX, Quang TH, Tung PT, Tai BH, Luyen BTT, Chae D, Kim S, Koh YS, Kiem PV, Minh CV, Kim YH (2012) Diterpenoids from the soft coral Sinularia maxima and their inhibitory effects on lipopolysaccharide-stimulated production of proinflammatory cytokines in bone marrow-derived dendritic cells. Chem Pharm Bull 60:1581–1589 Thao NP, Nam NH, Cuong NX, Quang TH, Tung PT, Dat LD, Chae D, Kim S, Koh YS, Kiem PV, Minh CV, Kim YH (2013) Anti-inflammatory norditerpenoids from the soft coral Sinularia maxima. Bioorg Med Chem Lett 23:228–231 Thao NP, Luyen BTT, Ngan NTT, Song SB, Cuong NX, Nam NH, Kiem PV, Kim YH, Minh CV (2014) New anti-inflammatory cembranoid diterpenoids from the Vietnamese soft coral Lobophytum crassum. Bioorg Med Chem Lett 24:228–232 Tullberg-Reinert H, Jundt G (1999) In situ measurement of collagen synthesis by human bone cells with a Sirius Red-based colorimetric microassay: effects of transforming growth factor β2 and ascorbic acid 2-phosphate. Histochem Cell Biol 112:271–276 Wilson C (2014) Bone: oxidative stress and osteoporosis. Nat Rev Endocrinol. doi:10.1038/nrendo.2013.1225 Yan XT, Lee SH, Li W, Sun YN, Yang SY, Jang HD, Kim YH (2014) Evaluation of the antioxidant and anti-osteoporosis activities of chemical constituents of the fruits of Prunus mume. Food Chem 156:408–415 Young IS, Woodside JV (2001) Antioxidants in health and disease. J Clin Pathol 54:176–186