Antinociceptive Effect of Volatile Oils from Ocimum basilicum Flowers on Adult Zebrafish
Tóm tắt
The species Ocimum basilicum L., Lamiaceae, is popular for culinary purposes and medicinal use as a larvicide, repellent, antifungal, and antimicrobial agent. Therefore, the aim of the present study is to evaluate the chemical composition and antinociceptive effect of the volatile oil of O. basilicum flowers using adult zebrafish (Danio rerio) (n = 6/group) treated orally (20 µl) with volatile oil (0.25, 1.25, or 2.5 mg/ml; 20 µl) or vehicle (0.9% NaCl, 20 µl). The volatile oil of the O. basilicum flowers was obtained by hydrodistillation and analyzed by GC–MS, and the antinociceptive action is evaluated by different stimuli using motor parameters. The analysis of the chemical profile identified fourteen components with linalool (1) as a major chemical constituent (56.37%). The oral administration of volatile oil did not show any acute toxicity or behavior effects in all tested doses. The volatile oil has a pharmacological potential for the treatment of acute pain by modulation of opioid system, N-methyl-d-aspartate receptors (glutamatergic receptor), and the transient receptor potential vanilloid subtype 1 and acid-sensing ion channels. Together, these data provide support for analgesic properties of the volatile oil and contribute to suggest that the adult zebrafish model presents the cheapest, cost-effective pharmacological alternative for the discovery of novel analgesics.
Tài liệu tham khảo
Amor G, Sabbah M, Caputo L, Idbella M, De Feo V, Porta R, Fechtali T, Mauriello G (2021) Basil essential oil: composition, antimicrobial properties, and microencapsulation to produce active chitosan films for food packaging. Foods 10:121–135. https://doi.org/10.3390/foods10010121
Bae AH, Kim G, Seol GH, Lee SB, Lee JM, Chang W, Min SS (2020) Delta- and mu-opioid pathways are involved in the analgesic effect of Ocimum basilicum L in mice. J Ethnopharmacol 250:112471. https://doi.org/10.1016/j.jep.2019.112471
Batista FLA, Lima LMG, Abrante IA, de Araújo JIF, Batista FLA, Abrante IA, Magalhães EA, de Lima DR, Lima MCL, Prado do BS, Moura LFWG, Guedes MIF, Ferreira MKA, Menezes de JESA, Santos SAAR, Mendes FRS, Moreira RA, Monteiro-Moreira ACO, Campos AR, Magalhães FEA (2018) Antinociceptive activity of ethanolic extract of Azadirachta indica A. Juss (Neem, Meliaceae) fruit through opioid, glutamatergic and acid-sensitive ion pathways in adult zebrafish (Danio rerio). Biomed Pharmacother 108:408–416. https://doi.org/10.1016/j.biopha.2018.08.160
Batista P, Harris E, Werner M, Santos A, Story G (2011) Inhibition of TRPA1 and NMDA channels contributes to anti-nociception induced by (-)-linalool. J Pain 12:P30. https://doi.org/10.1016/j.jpain.2011.02.122
Bitu VCN, Bitu VCN, Matias EFF, de Lima WP, Portelo AC, Coutinho HDM, de Menezes IRA (2015) Ethnopharmacological study of plants sold for therapeutic purposes in public markets in Northeast Brazil. J Ethnopharmacol 172:265–272. https://doi.org/10.1016/j.jep.2015.06.022
Brown HK, Schiavone K, Tazzyman S, Heymann D, Chico TJ (2017) Zebrafish xenograft models of cancer and metastasis for drug discovery. Expert Opin Drug Discov 12:379–389. https://doi.org/10.1080/17460441.2017.1297416
Cabral PHB, De Morais-Campos R, Fonteles MC, Santos CF, Leal-Cardoso JH, Nascimento NRF (2014) Effects of the essential oil of Croton zehntneri and its major components, anethole and estragole, on the rat corpora cavernosa. Life Sci 112:74–81. https://doi.org/10.1016/j.lfs.2014.07.022
Collymore C, Rasmussen S, Tolwani RJ (2013) Gavaging adult zebrafish. J Vis Exp 78:5069. https://doi.org/10.3791/50691
Ekambaram SP, Perumal SS, Pavadai S (2017) Anti-inflammatory effect of Naravelia zeylanica DC via suppression of inflammatory mediators in carrageenan-induced abdominal oedema in zebrafish model. Inflammopharmacology 25:147–158. https://doi.org/10.1007/s10787-016-0303-2
Ellison DL (2017) Physiology of pain. Crit Care Nurs Clin North Am 29:397–406. https://doi.org/10.1016/j.cnc.2017.08.001
Gaddaguti V, Venkateswara Rao T, Prasada Rao A (2016) Potential mosquito repellent compounds of Ocimum species against 3N7H and 3Q8I of Anopheles gambiae. 3 Biotech 6:26. https://doi.org/10.1007/s13205-015-0346-x
Govindarajan M, Sivakumar R, Rajeswary M, Yogalakshmi K (2013) Chemical composition and larvicidal activity of essential oil from Ocimum basilicum (L.) against Culex tritaeniorhynchus, Aedes albopictus and Anopheles subpictus (Diptera: Culicidae). Exp Parasitol 134:7–11. https://doi.org/10.1016/j.exppara.2013.01.018
Gu Q, Lee LY (2010) Acid-sensing ion channels and pain. Pharmaceuticals 3:1411–1425. https://doi.org/10.3390/ph3051411
Hutson MR, Keyte AL, Hernández-Morales M, Gibbs E, Kupchinsky ZA, Argyridis I, Erwin KN, Pegram K, Kneifel M, Rosenberg PB, Matak P, Xie L, Grandl J, Davis EE, Katsanis N, Liu C, Benner EJ (2017) Temperature-activated ion channels in neural crest cells confer maternal fever–associated birth defects. Sci Signal 10:eaa14055. https://doi.org/10.1126/scisignal.aal4055
Khan A, Khan S, Kim YS (2019) Insight into pain modulation: nociceptors sensitization and therapeutic targets. Curr Drug Targets 20:775–788. https://doi.org/10.2174/1389450120666190131114244
Kumar A, Sharma A, Vijayakumar M, Rao ChV (2010) Antiulcerogenic effect of ethanolic extract of Portulaca oleracea experimental study. Pharmacol online 1:417–432
Levanti M, Randazzo B, Viña E, Montalbano G, Garcia-Suarez O, Germanà A, Vega JA, Abbate F (2016) Acid-sensing ion channels and transient-receptor potential ion channels in zebrafish taste buds. Ann Anat 207:32–37. https://doi.org/10.1016/j.aanat.2016.06.006
Lima MDCL, de Araújo JIF, Gonçalves Mota C, Magalhães FEA, Campos AR, da Silva PT, Rodrigues THS, Matos MGC, de Sousa KC, de Sousa MB, Saker-Sampaio S, Pereira AL, Teixeira EH, dos Santos HS (2020) Antinociceptive effect of the essential oil of Schinus terebinthifolius (female) leaves on adult zebrafish (Danio rerio). Zebrafish 17:112–119. https://doi.org/10.1089/zeb.2019.1809
Magalhães FEA, Batista FLA, Lima LMG, Abrante IA, Batista FLA, de Araújo JIF, Santos SAAR, de Oliveira BA, Raposo RDS, Campos AR (2018) Adult zebrafish (Danio rerio) as a model for the study of corneal antinociceptive compounds. Zebrafish 15:566–574. https://doi.org/10.1089/zeb.2018.1633
Magalhães FEA, de Sousa CÁPB, Santos SAAR, Menezes RB, Batista FLA, Abreu ÂO, de Oliveira MV, Moura LFWG, Raposo RDS, Campos AR (2017) Adult zebrafish (Danio rerio): an alternative behavioral model of formalin-induced nociception. Zebrafish 14:422–429. https://doi.org/10.1089/zeb.2017.1436
Marone IM, De Logu F, Nassini R, De Carvalho-Goncalves M, Benemei S, Ferreira J, Jain P, Li Puma S, Bunnett NW, Geppetti P, Materazzi S (2018) TRPA1/NOX in the soma of trigeminal ganglion neurons mediates migraine-related pain of glyceryl trinitrate in mice. Brain 141:2312–2328. https://doi.org/10.1093/brain/awy177
Nakayama J, Makinoshima H (2020) Zebrafish-based screening models for the identification of anti-metastatic drugs. Molecules 25:2407. https://doi.org/10.3390/molecules25102407
Pan Z, Wang Z, Yang H, Zhang F, Reinach PS (2011) TRPV1 activation is required for hypertonicity-stimulated inflammatory cytokine release in human corneal epithelial cells. Investig Opthalmology Vis Sci 52:485. https://doi.org/10.1167/iovs.10-5801
Rash JA, Poulin PA, Shergill Y, Romanow H, Freeman J, Taljaard M, Hebert G, Stiell IG, Smyth CE (2018) Chronic pain in the emergency department: a pilot interdisciplinary program demonstrates improvements in disability, psychosocial function, and healthcare utilization. Pain Res Manag 2018:1875967. https://doi.org/10.1155/2018/1875967
Rios ERV, Rocha NFM, Carvalho AMR, Vasconcelos LF, Dias ML, de Sousa DP, de Sousa FCF, de França-Fonteles MM (2013) TRP and ASIC channels mediate the antinociceptive effect of citronellyl acetate. Chem Biol Interact 203:573–579. https://doi.org/10.1016/j.cbi.2013.03.014
Robinson KSL, Stewart AM, Cachat J, Landsman S, Gebhardt M, Kalueff AV (2013) Psychopharmacological effects of acute exposure to kynurenic acid (KYNA) in zebrafish. Pharmacol Biochem Behav 108:54–60. https://doi.org/10.1016/j.pbb.2013.04.002
Rodrigues LB, Martins AOBPB, Ribeiro-Filho J, Cesário FRAS, Castro FF, de Albuquerque TR, Fernandes MNM, da Silva BAF, Quintans Júnior LJ, Araújo AAS, Menezes P, Nunes PS, Matos IG, Coutinho HDM, Wanderley AG, de Menezes IRA (2017) Anti-inflammatory activity of the essential oil obtained from Ocimum basilicum complexed with β-cyclodextrin (β-CD) in mice. Food Chem Toxicol 109:836–846. https://doi.org/10.1016/j.fct.2017.02.027
Rodrigues LB, Martins AOBPB, Cesário FRAS, Castro FF, de Albuquerque TR, Martins Fernandes MNM, da Silva BAF, Quintans Júnior LJ, da Costa JGM, Coutinho HDM, Barbosa R, de Menezes IRA (2016) Anti-inflammatory and antiedematogenic activity of the Ocimum basilicum essential oil and its main compound estragole: in vivo mouse models. Chem Biol Interact 257:14–25. https://doi.org/10.1016/j.cbi.2016.07.026
Sabogal-Guáqueta AM, Hobbie F, Keerthi A, Oun A, Kortholt A, Boddeke E, Dolga A (2019) Linalool attenuates oxidative stress and mitochondrial dysfunction mediated by glutamate and NMDA toxicity. Biomed Pharmacother 118:109295. https://doi.org/10.1016/j.biopha.2019.109295
Saldanha AA, Vieira L, Ribeiro RIMA, Thomé RG, Santos HB, Silva DB, Carollo CA, Oliveira FM, Lopes DO, Siqueira JM, Soares AC (2019) Chemical composition and evaluation of the anti-inflammatory and antinociceptive activities of Duguetia furfuracea essential oil: effect on edema, leukocyte recruitment, tumor necrosis factor alpha production, iNOS expression, and adenosinergic and opioid. J Ethnopharmacol 231:325–336. https://doi.org/10.1016/j.jep.2018.11.017
Silva VA, da Sousa JP, de Pessôa HLF, de Freitas AFR, Coutinho HDM, Alves LBN, Lima EO (2016) Ocimum basilicum: antibacterial activity and association study with antibiotics against bacteria of clinical importance. Pharm Biol 54:863–867. https://doi.org/10.3109/13880209.2015.1088551
Soares ICR, Santos SAAR, Coelho RF, Alves YA, Vieira-Neto AE, Tavares KCS, Magalhaes FEA, Campos AR (2019) Oleanolic acid promotes orofacial antinociception in adult zebrafish (Danio rerio) through TRPV1 receptors. Chem Biol Interact 299:37–43. https://doi.org/10.1016/j.cbi.2018.11.018
Treede RD, Rief W, Barke A, Aziz Q, Bennett MI, Benoliel R, Cohen M, Evers S, Finnerup NB, First MB, Giamberardino MA, Kaasa S, Korwisi B, Kosek E, Lavand’homme P, Nicholas M, Perrot S, Scholz J, Schug S, Smith BH, Svensson P, Vlaeyen JWS, Wang SJ, (2019) Chronic pain as a symptom or a disease: the IASP Classification of Chronic Pain for the International Classification of Diseases (ICD-11). Pain 160:19–27. https://doi.org/10.1097/j.pain.0000000000001384
Vimalraj S, Pichu S, Pankajam T, Dharanibalan K, Djonov V, Chatterjee S (2019) Nitric oxide regulates intussusceptive-like angiogenesis in wound repair in chicken embryo and transgenic zebrafish models. Nitric Oxide 82:48–58. https://doi.org/10.1016/j.niox.2018.11.001
Zeng WZ, Liu DS, Xu TL (2014) Acid-sensing ion channels: trafficking and pathophysiology. Channels 8:481–487. https://doi.org/10.4161/19336950.2014.958382