Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Hoạt động chống Mycobacterium in vitro của các sắc tố được chiết xuất từ vi khuẩn ở Nam Cực
Tóm tắt
Trong nghiên cứu này, chúng tôi mô tả hoạt động chống mycobacterium của hai sắc tố, violacein, một sắc tố màu tím từ Janthinobacterium sp. Ant5-2 (J-PVP), và flexirubin, một sắc tố màu vàng cam từ Flavobacterium sp. Ant342 (F-YOP). Các sắc tố này được tách chiết từ các chủng vi khuẩn tìm thấy trong các hồ nước ngọt không có lối ra ở ốc đảo Schirmacher, Đông Nam Cực. Nồng độ ức chế tối thiểu (MIC) của các sắc tố này đối với mycobacteria không độc lực và độc lực đã được xác định thông qua phương pháp Alamar Blue Assay (MABA) và Nitrate Reductase Assay (NRA). Kết quả cho thấy MIC của J-PVP và F-YOP lần lượt là 8,6 và 3,6 μg/ml đối với Mycobacterium smegmatis mc2155 không độc lực; 5 và 2,6 μg/ml đối với Mycobacterium tuberculosis mc26230 không độc lực; và 34,4 và 10,8 μg/ml đối với M. tuberculosis H37Rv độc lực. J-PVP có MIC thấp hơn khoảng 15 lần đối với Mycobacterium sp. so với các báo cáo trước đây về sắc tố violacein từ Chromobacterium violaceum, trong khi hiệu ứng chống mycobacterium của F-YOP vẫn chưa được ghi nhận. Kết quả của chúng tôi cho thấy các sắc tố này được chiết xuất từ vi khuẩn ở Nam Cực có thể là các hợp chất dẫn dắt có giá trị cho các loại thuốc chống mycobacterium mới được sử dụng trong hóa trị liệu bệnh lao.
Từ khóa
#Sắc tố #hoạt động chống mycobacterium #vi khuẩn Nam Cực #hóa trị liệu #bệnh laoTài liệu tham khảo
Achenbach H, Kohl W, Wachter W, Reichenbach H (1978) Investigations of the pigments from Cytophaga johnsonae Cy jl. New flexirubin-type pigments. New flexirubin-type pigments. Arch Microbiol 117:253–257
Agrawal DK, Saikia D, Tiwari R, Ojha S, Shanker K, Kumar JK, Gupta AK, Tandon S, Negi AS, Khanuja SP (2008) Demethoxycurcumin and its semisynthetic analogues as antitubercular agents. Planta Med 74:1828–1831
Barry CE et al (1998) Mycolic acids: structure, biosynthesis and physiological functions. Prog Lipid Res 37:143–179
Bernardet JF, Nakagawa Y, Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070
Brennan PJ, Nikaido H (1995) The envelope of mycobacteria. Annu Rev Biochem 64:29–63
Bueno-Sanchez JG, Martinez-Morales JR, Stashenko EE, Ribon W (2009) Anti-tubercular activity of eleven aromatic and medicinal plants occurring in Colombia. Biomedica 29:51–60
Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low-temperature extremophiles and their applications. Curr Opin Biotechnol 13:253–261
Chanwong S, Maneekarn N, Makonkawkeyoon L, Makonkawkeyoon S (2007) Intracellular growth and drug susceptibility of Mycobacterium tuberculosis in macrophages. Tuberculosis (Edinb) 87:130–133
Duran N, Menck CF (2001) Chromobacterium violaceum: a review of pharmacological and industrial perspectives. Crit Rev Microbiol 27:201–222
Fattorini L, Migliori GB, Cassone A (2007) Extensively drug-resistant (XDR) tuberculosis: an old and new threat. Ann Ist Super Sanita 43:317–319
Fautz E, Reichenbach H (1980) A simple test for flexirubin-type pigments. FEMS Microbiol Lett 8:87–91
Fs.No.104 (2008) WHO, pp 1–304
Gandhi NR, Nunn P, Dheda K, Schaaf HS, Zignol M, van Soolingen D, Jensen P, Bayona J (2010) Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet 375:1830–1843
Hoffmann C, Leis A, Niederweis M, Plitzko JM, Engelhardt H (2008) Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc Natl Acad Sci USA 105:3963–3967
Kuete V, Ngameni B, Simo CC, Tankeu RK, Ngadjui BT, Meyer JJ, Lall N, Kuiate JR (2008) Antimicrobial activity of the crude extracts and compounds from Ficus chlamydocarpa and Ficus cordata (Moraceae). J Ethnopharmacol 120:17–24
Kuete V, Tangmouo JG, Meyer JJM, Lall N (2009) Diospyrone, crassiflorone and plumbagin: three antimycobacterial and antigonorrhoeal naphthoquinones from two Diospyros spp. Int J Antimicrob Agents 34:322–325
Kumar M, Khan IA, Verma V, Kalyan N, Qazi GN (2005a) Rapid, inexpensive MIC determination of Mycobacterium tuberculosis isolates by using microplate nitrate reductase assay. Diagn Microbiol Infect Dis 53:121–124
Kumar M, Khan IA, Verma V, Qazi GN (2005b) Microplate nitrate reductase assay versus Alamar Blue Assay for MIC determination of Mycobacterium tuberculosis. Int J Tuberc Lung Dis 9:939–941
Lall N, Meyer JJ (2001) Inhibition of drug-sensitive and drug-resistant strains of Mycobacterium tuberculosis by diospyrin, isolated from Euclea natalensis. J Ethnopharmacol 78:213–216
Lechner D, Gibbons S, Bucar F (2008) Plant phenolic compounds as ethidium bromide efflux inhibitors in Mycobacterium smegmatis. J Antimicrob Chemother 62:345–348
Li Y et al (2008) Bioactive asterric acid derivatives from the Antarctic ascomycete fungus Geomyces sp. J Nat Prod 71:1643–1646
Lin YM, Flavin MT, Cassidy CS, Mar A, Chen FC (2001) Biflavonoids as novel antituberculosis agents. Bioorg Med Chem Lett 11:2101–2104
Lo Giudice A, Brilli M, Bruni V, De Domenico M, Fani R, Michaud L (2007a) Bacterium-bacterium inhibitory interactions among psychrotrophic bacteria isolated from Antarctic seawater (Terra Nova Bay, Ross Sea). FEMS Microbiol Ecol 60:383–396
Lo Giudice A, Bruni V, Michaud L (2007b) Characterization of Antarctic psychrotrophic bacteria with antibacterial activities against terrestrial microorganisms. J Basic Microbiol 47:496–505
Mativandlela SP, Meyer JJ, Hussein AA, Houghton PJ, Hamilton CJ, Lall N (2008) Activity against Mycobacterium smegmatis and M. tuberculosis by extract of South African medicinal plants. Phytother Res 22:841–845
Matz C et al (2008) Marine biofilm bacteria evade eukaryotic predation by targeted chemical defense. PLoS One 3:e2744
McLean KJ, Marshall KR, Richmond A, Hunter IS, Fowler K, Kieser T, Gurcha SS, Besra GS, Munro AW (2002) Azole antifungals are potent inhibitors of cytochrome P450 mono-oxygenases and bacterial growth in mycobacteria and streptomycetes. Microbiology 148:2937–2949
Melo PS, Justo GZ, de Azevedo MB, Duran N, Haun M (2003) Violacein and its beta-cyclodextrin complexes induce apoptosis and differentiation in HL60 cells. Toxicology 186:217–225
Migliori GB, De Iaco G, Besozzi G, Centis R, Cirillo DM (2007) First tuberculosis cases in Italy resistant to all tested drugs. Eurosurveillance 12(20):3194
Migliori GB, Sotgiu G (2010) XDR tuberculosis in South Africa: old questions, new answers. Lancet 375:1760–1761
Mitscher LA, Baker W (1998) Tuberculosis: a search for novel therapy starting with natural products. Med Res Rev 18:363–374
Momen AZ, Hoshino T (2000) Biosynthesis of violacein: intact incorporation of the tryptophan molecule on the oxindole side, with intramolecular rearrangement of the indole ring on the 5-hydroxyindole side. Biosci Biotechnol Biochem 64:539–549
Murthy PS, Ratnakar P, Gadre DV, Talwar V, Gupta HC, Gupta RL (2008) Trifluoperazine and CEF-allicin from garlic (Allium sativum) as potential new antitubercular drugs active against drug resistant Mycobacterium tuberculosis. Ind J Clin Biochem 12:72–75
Paudel B, Bhattarai HD, Lee JS, Hong SG, Shin HW, Yim JH (2008) Antibacterial potential of Antarctic lichens against human pathogenic Gram-positive bacteria. Phytother Res 22:1269–1271
Raviglione MC, Smith IM (2007) XDR tuberculosis—implications for global public health. N Engl J Med 356:656–659
Reichenbach H, Kleinig H (1974) The pigments of Flexibacter elegans: novel and chemosystematically useful compounds. Arch Microbiol 101:131–144
Rettori D, Duran N (1998) Production, extraction and purification of violacein: an antibiotic produced by Chromobacterium violaceum. World J Microbiol Biotechnol 14:685–688
Sajilata MG, Singhal RS, Kamat MY (2008) The carotenoid pigment zeaxanthin—a review. Compr Rev Food Sci Food Saf 7:29–49
Samad A, Sultana Y, Akhter MS, Aqil M (2008) Treatment of tuberculosis: use of active pharmaceuticals. Recent Pat Antiinfect Drug Discov 3:34–44
Shandil RK, Jayaram R, Kaur P, Gaonkar S, Suresh BL, Mahesh BN, Jayashree R, Nandi V, Bharath S, Balasubramanian V (2007) Moxifloxacin, ofloxacin, sparfloxacin, and ciprofloxacin against Mycobacterium tuberculosis: evaluation of in vitro and pharmacodynamic indices that best predict in vivo efficacy. Antimicrob Agents Chemother 51:576-582
Shiloh MU, Champion PAD (2010) To catch a killer. What can mycobacterial models teach us about Mycobacterium tuberculosis pathogenesis? Curr Opin Microbiol 13:86–92
Singh JA, Upshur R, Padayatchi N (2007) XDR-TB in South Africa: no time for denial or complacency. PLoS Med 4:e50
Snapper SB, Melton RE, Mustafa S, Kieser T, Jacobs WR (1990) Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol 4:1911–1919
Souza AO, Aily DCG, Sato DN, Duran N (1999) In vitro activity of violacein against Mycobacterium tuberculosis H37Ra. Rev Inst Adolfo Lutz 58:59–62
Suksamrarn A, Poomsing P, Aroonrerk N, Punjanon T, Suksamrarn S, Kongkun S (2003) Antimycobacterial and antioxidant flavones from Limnophila geoffrayi. Arch Pharm Res 26:816–820
Thompson BN, Hammer PE, Hill DS, Stafford J, Torkewitz N, Gaffney TD, Lam ST, Molnár I, Ligon JM (2003) 2,5-Dialkylresorcinol biosynthesis in Pseudomonas aurantiaca: novel head-to-head condensation of two fatty acid-derived precursors. J Bacteriol 185:860–869
Tomioka H, Namba K (2006) Development of antituberculous drugs: current status and future prospects. Kekkaku 81:753–774
Uplekar M, Lonnroth K (2007) MDR and XDR—the price of delaying engagement with all care providers for control of TB and TB/HIV. Trop Med Int Health 12:473–474
Wallace RJ Jr, Bedsole G, Sumter G, Sanders CV, Steele LC, Brown BA, Smith J, Graham DR (1990) Activities of ciprofloxacin and ofloxacin against rapidly growing mycobacteria with demonstration of acquired resistance following single-drug therapy. Antimicrob Agents Chemother 34:65–70
Zeng Y, Chen B, Zou Y, Zheng T (2008) Polar microorganisms, a potential source for new natural medicines—a review. Wei Sheng Wu Xue Bao 48:695–700