Antimony doped lead-free double perovskites (Cs2NaBi1−xSbxCl6) with enhanced light absorption and tunable emission

Journal of Materials Chemistry C - Tập 8 Số 39 - Trang 13603-13611
Shufang Wu1,2,3,4,5, Wenbo Li1,3,6,4,5, Junjie Hu1,2,4,5,7, Peng Gao1,2,4,5,7
1CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
2China
3Chinese Academy of sciences
4Fuzhou
5Laboratory of Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
6Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, China
7University of Chinese Academy of Sciences, Beijing, China

Tóm tắt

Antimony (Sb3+) ions are introduced to manipulate the structure and optical properties of Cs2NaBiCl6. New possibilities in photovoltaics and white light emission applications could be envisioned.

Từ khóa


Tài liệu tham khảo

Stoumpos, 2016, Adv. Mater., 28, 5778, 10.1002/adma.201600265

Jung, 2019, Nature, 567, 511, 10.1038/s41586-019-1036-3

Li, 2019, Nat. Commun., 10, 806, 10.1038/s41467-019-08768-z

Zhao, 2018, Joule, 2, 1662, 10.1016/j.joule.2018.06.017

Slavney, 2016, J. Am. Chem. Soc., 138, 2138, 10.1021/jacs.5b13294

Volonakis, 2017, J. Phys. Chem. Lett., 8, 772, 10.1021/acs.jpclett.6b02682

Igbari, 2019, Adv. Energy Mater., 9, 1, 10.1002/aenm.201803150

Giustino, 2016, ACS Energy Lett., 1, 1233, 10.1021/acsenergylett.6b00499

Slavney, 2017, J. Am. Chem. Soc., 139, 5015, 10.1021/jacs.7b01629

Slavney, 2018, Angew. Chem., 130, 12947, 10.1002/ange.201807421

Du, 2017, Angew. Chem., 129, 8270, 10.1002/ange.201703970

Yang, 2018, J. Am. Chem. Soc., 140, 17001, 10.1021/jacs.8b07424

Han, 2019, Sci. China: Chem., 62, 1405, 10.1007/s11426-019-9520-1

Gray, 2019, Inorg. Chem., 58, 13403, 10.1021/acs.inorgchem.9b02299

Luo, 2018, Nature, 563, 541, 10.1038/s41586-018-0691-0

Liu, 2019, Chem. Mater., 31, 3333, 10.1021/acs.chemmater.9b00410

Han, 2019, Angew. Chem., Int. Ed., 58, 17231, 10.1002/anie.201909525

Majher, 2019, Chem. Mater., 31, 1738, 10.1021/acs.chemmater.8b05280

Zhou, 2019, Adv. Opt. Mater., 7, 1

Tan, 2019, Sci. Bull., 64, 904, 10.1016/j.scib.2019.05.016

Smit, 1990, J. Phys. Chem. Solids, 51, 189, 10.1016/0022-3697(90)90092-T

Filip, 2018, J. Phys. Chem. C, 122, 158, 10.1021/acs.jpcc.7b10370

Luo, 2018, ACS Photonics, 5, 398, 10.1021/acsphotonics.7b00837

Zhao, 2018, J. Phys. Chem. Solids, 117, 117, 10.1016/j.jpcs.2018.02.032

Wei, 2019, Chem. Commun., 55, 3721, 10.1039/C9CC01134J

Hao, 2018, J. Mater. Chem. A, 6, 16094, 10.1039/C8TA06349D

Zhou, 2018, J. Mater. Chem. A, 6, 2346, 10.1039/C7TA10062K

Day, 1963, Inorg. Chem., 2, 452, 10.1021/ic50007a006

Yang, 2019, Angew. Chem., Int. Ed., 58, 2278, 10.1002/anie.201811610

Li, 2019, Front. Optoelectron., 12, 352, 10.1007/s12200-019-0907-4

Jing, 2019, J. Phys. Chem. Lett., 10, 7439, 10.1021/acs.jpclett.9b03035

Zeng, 2020, J. Phys. Chem. Lett., 11, 2053, 10.1021/acs.jpclett.0c00330

Gray, 2020, J. Mater. Chem. C, 8, 6797, 10.1039/D0TC01037E

Noculak, 2020, Chem. Mater., 32, 5118, 10.1021/acs.chemmater.0c01004

Oomen, 1987, Chem. Phys. Lett., 138, 23, 10.1016/0009-2614(87)80336-6

Locardi, 2018, J. Am. Chem. Soc., 140, 12989, 10.1021/jacs.8b07983