Antimony doped CsPbI2Br for high-stability all-inorganic perovskite solar cells

Mengfei Zhu1, Lina Qin1, Yuren Xia1, Junchuan Liang1, Yaoda Wang1, Daocheng Hong1, Yuxi Tian1, Zuoxiu Tie2,1,3, Zhong Jin2,1,3
1State Key Laboratory of Coordination Chemistry, Ministry of Education (MOE) Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
2Nanjing Tieming Energy Technology Co. Ltd., Nanjing, China
3Suzhou Tierui New Energy Technology Co. Ltd., Suzhou, China

Tóm tắt

All-inorganic perovskites, adopting cesium (Cs+) cation to completely replace the organic component of A-sites of hybrid organic–inorganic halide perovskites, have attracted much attention owing to the excellent thermal stability. However, all-inorganic iodine-based perovskites generally exhibit poor phase stability in ambient conditions. Herein, we propose an efficient strategy to introduce antimony (Sb3+) into the crystalline lattices of CsPbI2Br perovskite, which can effectively regulate the growth of perovskite crystals to obtain a more stable perovskite phase. Due to the much smaller ionic radius and lower electronegativity of trivalent Sb3+ than those of Pb2+, the Sb3+ doping can decrease surface defects and suppress charge recombination, resulting in longer carrier lifetime and negligible hysteresis. As a result, the all-inorganic perovskite solar cells (PSCs) based on 0.25% Sb3+ doped CsPbI2Br light absorber and screen-printable nanocarbon counter electrode achieved a power conversion efficiency of 11.06%, which is 16% higher than that of the control devices without Sb3+ doping. Moreover, the Sb3+ doped all-inorganic PSCs also exhibited greatly improved endurance against heat and moisture. Due to the use of low-cost and easy-to-process nanocarbon counter electrodes, the manufacturing process of the all-inorganic PSCs is very convenient and highly repeatable, and the manufacturing cost can be greatly reduced. This work offers a promising approach to constructing high-stability all-inorganic PSCs by introducing appropriate lattice doping.

Từ khóa


Tài liệu tham khảo