Kháng sinh và vi khuẩn kháng kháng sinh: Rủi ro đối với môi trường và sức khỏe cộng đồng
Tóm tắt
Sự phát thải kháng sinh vào môi trường, cũng như những hậu quả của việc tồn tại các dư lượng kháng sinh kháng khuẩn trong hệ sinh thái, đã trở thành chủ đề của nhiều nghiên cứu trên toàn thế giới. Việc lạm dụng và sử dụng sai kháng sinh là một hiện tượng toàn cầu phổ biến, làm gia tăng đáng kể mức độ kháng sinh trong môi trường và tốc độ lây lan của chúng. Ngày nay, có thể khẳng định rằng việc sản xuất và sử dụng hàng loạt kháng sinh vì những mục đích không phải điều trị y tế có tác động đến cả môi trường và sức khỏe con người. Bài tổng quan này nhằm theo dõi các con đường phân bố kháng khuẩn trong môi trường và xác định các hiệu ứng sinh học của nồng độ dưới ngưỡng ức chế của chúng trong các khoang môi trường khác nhau; đồng thời đánh giá nguy cơ sức khỏe cộng đồng liên quan và các can thiệp chính sách của chính phủ cần thiết để đảm bảo hiệu quả của các kháng sinh hiện có. Sự gia tăng gần đây trong sự quan tâm đối với vấn đề này là do sự tăng vọt đáng kể về số lượng nhiễm trùng do vi khuẩn kháng thuốc gây ra trên toàn cầu. Nghiên cứu của chúng tôi phù hợp với phương pháp tiếp cận Sức khỏe Một Thế giới toàn cầu.
Từ khóa
#kháng sinh #vi khuẩn kháng thuốc #sức khỏe cộng đồng #môi trường #dư lượng kháng sinhTài liệu tham khảo
Wang, 2010, Research of antibiotics pollution in soil environments and its ecological toxicity, J. Agro-Environ. Sci., 29, 261
Czekalski, 2014, Wastewater as a point source of antibiotic-resistance genes in the sediment of a freshwater lake, ISME J., 8, 1381, 10.1038/ismej.2014.8
ECDC (European Centre for Disease Prevention and Control) (2017). Antimicrobial Resistance Surveillance in Europe 2015, ECDC. Available online: https://www.ecdc.europa.eu/sites/default/files/media/en/publications/Publications/antimicrobial-resistance-europe-2015.pdf.
Davies, 2010, Origins and evolution of antibiotic resistance, Microbiol. Mol. Biol. Rev., 74, 417, 10.1128/MMBR.00016-10
Manaia, 2017, Assessing the Risk of Antibiotic Resistance Transmission from the Environment to Humans: Non-Direct Proportionality between Abundance and Risk, Trends Microbiol., 25, 3, 10.1016/j.tim.2016.11.014
Grare, 2007, In Vitro activity of paraguanidinoethylcalixarene against susceptible and antibiotic resistant Gram-negative and Gram-positive bacteria, J. Antimicrob. Chemother., 60, 575, 10.1093/jac/dkm244
De Kraker, M.E.A., Davey, P.G., and Grundmann, H. (2011). Mortality and hospital stay associated with resistant Staphylococcus aureus and Escherichia coli bacteremia: Estimating the burden of antibiotic resistance in Europe. PLoS Med., 8.
Carlet, 2011, Society’s failure to protect a precious resource: Antibiotics, Lancet, 378, 369, 10.1016/S0140-6736(11)60401-7
Pruden, 2006, Antibiotic resistance genes as emerging contaminants: Studies in northern Colorado, Environ. Sci. Technol., 40, 7445, 10.1021/es060413l
Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations (2020, July 06). Review on Antimicrobial Resistance. Available online: http://www.jpiamr.eu/wp-content/uploads/2014/12/AMR-Review-Paper-Tackling-a-crisis-for-the-health-and-wealth-of-nations_1-2.pdf.
Tackling Drug-Resistant Infections Globally: Final Report and Recommendations (2020, June 18). Review on Antimicrobial Resistance. Available online: https://amrreview.org/sites/default/files/160525_Final%20paper_with%20cover.pdf.
Katz, S.E. (1980). The effects of human health. Subtherapeutic Use of Antimicrobials in Animal Feeds, National Academy of Sciences.
Zhao, 2010, Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China, Sci. Total Environ., 408, 1069, 10.1016/j.scitotenv.2009.11.014
McArdell, 2004, Trace determination of macrolide and sulfonamide antimicrobials a human sulfonamide metabolite and trimetoprim in wastewater using liquid chromatography coupled to electrospray tandem mass spectrometry, Anal. Chem., 76, 4756, 10.1021/ac0496603
Kemper, 2008, Veterinary antibiotics in the aquatic and terrestrial environment, Ecol. Indic., 8, 1, 10.1016/j.ecolind.2007.06.002
Yang, 2010, Simultaneous determination of four classes of antibiotics in sediments of the Pearl Rivers using RRLC–MS/MS, Sci. Total Environ., 408, 3424, 10.1016/j.scitotenv.2010.03.049
2009, Antibiotics in the aquatic environment: A review: Part I, Chemosphere, 75, 417, 10.1016/j.chemosphere.2008.11.086
Turiel, 2005, Study of the evolution and degradation products of ciprofloxacin and oxolinic acid in river water samples by HPLC-UV/MS/MS-MS, J. Environ. Monit., 7, 189, 10.1039/B413506G
Martinez, 2009, Environmental pollution by antibiotics and by an-tibiotic resistance determinants, Environ. Pollut., 157, 2893, 10.1016/j.envpol.2009.05.051
Rusch, 2019, Degradation and transformation of fluoroquinolones by microorganisms with special emphasis on ciprofloxacin, Appl. Microbiol. Biotechnol., 103, 6933, 10.1007/s00253-019-10017-8
Larsson, 2007, Effluent from drug manufactures contains extremely high levels of pharmaceuticals, J. Hazard Mater., 148, 751, 10.1016/j.jhazmat.2007.07.008
Jechalke, 2017, Fate and effects of veterinary antibiotics in soil, Trends Microbiol., 22, 536, 10.1016/j.tim.2014.05.005
Krapac, 2012, Environmental Impacts of Antibiotic Use in the Animal Production Industry, Ecol. Anim. Health Ecosyst. Health Sustain. Agric., 2, 228
Wang, 2015, Antibiotic use and abuse: A threat to mitochondria and chloroplasts with impact on research, health, and environment, Bioessays, 37, 1045, 10.1002/bies.201500071
Minden, V., Deloy, A., Volkert, A.M., Leonhardt, S.D., and Pufal, G. (2017). Antibiotics impact plant traits, even at small concentrations. AoB Plants, 9.
Darwish, W.S., Eldaly, E.A., El-Abbasy, M.T., Ikenaka, Y., Nakayama, S., and Ishizuka, M. (2013). Antibiotic residues in food: The African scenario. Jpn. J. Vet. Res., 61.
National Academies of Sciences Medicine (2020, June 22). Environmental Chemicals, the Human Microbiome, and Health Risk: A Research Strategy, Available online: https://www.ncbi.nlm.nih.gov/books/NBK481563/.
Damman, 2012, The Microbiome and Inflammatory Bowel Disease: Is There a Therapeutic Role for Fecal Microbiota Transplantation?, Am. J. Gastroentero., 107, 1452, 10.1038/ajg.2012.93
Cox, 2014, Altering the Intestinal Microbiota during a Critical Developmental Window Has Lasting Metabolic Consequences, Cell, 158, 705, 10.1016/j.cell.2014.05.052
Cho, 2012, Antibiotics in early life alter the murine colonic microbiome and adiposity, Nature, 488, 621, 10.1038/nature11400
Larsson, 2016, Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation, Environ. Int., 86, 140, 10.1016/j.envint.2015.10.015
Gullberg, E., Cao, S., Berg, O.G., Ilbäck, C., Sandegren, L., Hughes, D., and Andersson, D.I. (2011). Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog., 7.
Andersson, 2012, Evolution of antibiotic resistance at non-lethal drug concentrations, Drug Resist. Update, 15, 162, 10.1016/j.drup.2012.03.005
Goh, 2002, Transcriptional modulation of bacterial gene expression by subin-hibitory concentrations of antibiotics, Proc. Natl. Acad. Sci. USA, 99, 17025, 10.1073/pnas.252607699
Shaw, 2003, Comparison of the changes in global gene expression of Escherichia coli induced by four bactericidal agents, J. Mol. Microbiol. Biotechnol., 5, 105
Davies, 2012, Introducing the parvome: Bioactive com-pounds in the microbial word, ACS Chem. Biol., 7, 252, 10.1021/cb200337h
Laureti, 2013, Bacterial responses and genome instability induced by subinhibitory concentrations of antibiotics, Antibiotics, 2, 100, 10.3390/antibiotics2010100
Couce, 2009, Side effects of antibiotics on genetic variability, FEMS Microbiol. Rev., 33, 531, 10.1111/j.1574-6976.2009.00165.x
Couce, 2012, Antimicrobials as promoters of genetic variation, Curr. Opin. Microbiol., 15, 561, 10.1016/j.mib.2012.07.007
Bruchmann, 2013, Sub-inhibitory concentrations of antibiotics and wastewater influencing biofilm formation and gene expression of multi-resistant Pseudomonas aeruginosa wa-stewater isolates, Environ. Sci. Pollut. Res. Int., 20, 3539, 10.1007/s11356-013-1521-4
Li, 2005, Induction of fibronectin adhesins in quinolone-resistant Staphylococcus aureus by subinhibitory levels of ciprofloxacin or by sigma B transcription factor activity is mediated by two separate pathways, Antimicrob. Agents Chemother., 49, 916, 10.1128/AAC.49.3.916-924.2005
Joo, 2010, Subinhibitory con-centrations of protein synthesis-inhibiting antibiotics promote in-creased expression of the agr virulence regulator and production of phenol-soluble modulin cytolysins in community-associated methicillin-resistant Staphylococcus aureus, Antimicrob. Agents Chemother., 54, 4942, 10.1128/AAC.00064-10
Chow, 2021, A survey of sub-inhibitory concentrations of antibiotics in the environment, J. Environ. Sci., 99, 21, 10.1016/j.jes.2020.05.030
Armbruster, 2008, Limit of blank, limit of detection and limit of quantitation, Clin. Biochem. Rev., 29, 49
(2020, June 22). The European Committee on Antimicrobial Susceptibility Testing, Data from the EU—CAST MIC Distribution Website. Available online: https://eucast.org/.
Liu, 2016, Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study, Lancet Infect. Dis., 16, 161, 10.1016/S1473-3099(15)00424-7
Skov, 2016, Plasmid-mediated colistin resistance (mcr-1 gene): Three months later, the story unfolds, Eurosurveillance, 21, 30155, 10.2807/1560-7917.ES.2016.21.9.30155
Zhu, 2017, Continental-scale pollution of estuaries with antibiotic resistance genes, Nat. Microbiol., 2, 16270, 10.1038/nmicrobiol.2016.270
2002, Signal transduction and regulatory mechanisms involved in control of the δS (RpoS) subunit of RNA poly-merase, Microbiol. Mol. Biol. Rev., 66, 373, 10.1128/MMBR.66.3.373-395.2002
Chiang, 2010, Evolution of the RpoS regulon: Origin of RpoS and the conservation of RpoS-dependent regulation in bacteria, J. Mol. Evol., 70, 557, 10.1007/s00239-010-9352-0
Gutierrez, 2013, β-lactam antibiotics promote bacterial mutagenesis via an RpoS-me-diated reduction in replication fidelity, Nat. Commun., 4, 1610, 10.1038/ncomms2607
Tenover, 2006, Mechanisms of antimicrobial resistance in bacteria, Am. J. Med., 119, S3, 10.1016/j.amjmed.2006.03.011
Moncalian, 2016, Comparative genomics of the conjugation region of F-like plasmids: Five shades of F, Front. Mol. Biosci., 3, 71
Davies, 2000, Horizontal gene transfer and the origin of species: Lessons from bacteria, Trends Microbiol., 8, 128, 10.1016/S0966-842X(00)01703-0
Ashbolt, 2013, Human Health Risk Assessment (HHRA) for environmental development and transfer of antibiotic resistance, Environ. Health. Perspect., 121, 993, 10.1289/ehp.1206316
Martinez, 2008, Antibiotics and antibiotic resistance genes in natural environments, Science, 321, 365, 10.1126/science.1159483
Perron, G.G., Whyte, L., Turnbaugh, P.J., Goordial, J., Hanage, W.P., Dantas, G., and Desai, M.M. (2015). Functional characterization of bacteria isolated from ancient arctic soil exposes diverse resistance mechanisms to modern antibiotics. PLoS ONE, 10.
Santiago-Rodriguez, T.M., Fornaciari, G., Luciani, S., Dowd, S.E., Toranzos, G.A., Marota, I., and Cano, R.J. (2015). Gut microbiome of an 11th century A.D. pre-columbian andean mummy. PLoS ONE, 10.
Rascovan, 2016, Exploring divergent antibiotic resistance genes in ancient metagenomes and discovery of a novel beta-lactamase family, Environ. Microbiol. Rep., 8, 886, 10.1111/1758-2229.12453
Lugli, 2017, Ancient bacteria of the Otzi’s microbiome: A genomic tale from the copper age, Microbiome, 5, 1
Sweney, 2018, Applying definitions for multidrug resistance, extensive drug resistance and pandrug resistance to clinically significant livestock and companion animal bacterial pathogens, J. Antimicrob. Chemother., 73, 1460, 10.1093/jac/dky043
Valentin, 2014, Subgrouping of ESBL-producing Escherichia coli from animal and human sources: An approach to quantify the distribution of ESBL types between different reservoirs, Int. J. Med. Microbiol., 304, 805, 10.1016/j.ijmm.2014.07.015
Stephan, 2016, Epidemiology of extendedspectrum β-lactamase-producing Escherichia coli in the humanlivestock environment, Curr. Clin. Microbiol. Rep, 3, 1, 10.1007/s40588-016-0027-5
Sala, 2015, Salmonella in raw chicken meat from the Romanian seaside: Frequency of isolation and antibiotic resistance, J. Food Prot., 78, 1003, 10.4315/0362-028X.JFP-14-460
Woerther, 2015, Mechanisms of antimicrobial resistance in Gram-negative bacilli, Ann. Intensive Care, 5, 21, 10.1186/s13613-015-0061-0
Bush, 2010, Updated functional classification of -lactamases, Antimicrob. Agents Chemother., 54, 969, 10.1128/AAC.01009-09
Miyagi, 2019, A survey of extended-spectrum b-lactamase-producing Enterobacteriaceae in environmental water in Okinawa Prefecture of Japan and relationship with indicator organisms, Environ. Sci. Pollut. Res., 26, 7697, 10.1007/s11356-019-04189-z
Joshi, 2013, Acinetobacter baumannii: An emerging pathogenic threat to public health, World J. Clin. Infect. Dis., 3, 25, 10.5495/wjcid.v3.i3.25
Safaei, 2017, Distribution of the strains of multidrug-resistant, extensively drug-resistant, and pandrug-resistant Pseudomonas aeruginosa isolates from burn patients, Adv. Biomed. Res., 6, 74, 10.4103/abr.abr_239_16
Du, 2019, Predictors of mortality in patients infected with carbapenem-resistant Acinetobacter baumannii: A systematic review and meta-analysis, Am. J. Infect. Control, 47, 1140, 10.1016/j.ajic.2019.03.003
Arora, 2014, Novel chromogenic medium for detection of extended-spectrum beta-lactamase-producing Enterobacteriaceae, methicillin resistant Staphylococcus aureus and vancomycin resistant Enterococcus, J. Med. Investig. Pract., 9, 98
Djenadi, 2017, Antibiotic resistance bacteria from rivers water in Algeria, J. Bacteriol. Parasitol., 8, 1, 10.4172/2155-9597.1000319
World Health Organization (WHO) (2018). Food and Agricultural Organization of the United Nations, World Organisation for Animal Health. Monitoring Global Progress on Addressing Antimicrobial Resistance: Analysis Report of the Second Round of Results of AMR Country Self-Assessment Survey, World Health Organization (WHO).
Czekalski, 2015, Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes, Environ. Int., 81, 45, 10.1016/j.envint.2015.04.005
Chen, 2015, Prevalence of antibiotic resistance genes of wastewater and surface water in livestock farms of Jiangsu Province, China, Environ. Sci. Pollut. Res., 22, 13950, 10.1007/s11356-015-4636-y
Chen, 2017, Prevalence of antibiotic-resistant Escherichia coli in drinking water sources in Hangzhou city, Front. Microbiol., 8, 1133, 10.3389/fmicb.2017.01133
Korzeniewska, 2020, The prevalence of drug-resistant and virulent Staphylococcus spp. in a municipal wastewater treatment plant and their spread in the environment, Environ. Int., 143, 105914, 10.1016/j.envint.2020.105914
Zong, 2013, blaNDM-1-carrying Acinetobacter johnsonii detected in hospital sewage, J. Antimicrob. Chemother., 68, 1007, 10.1093/jac/dks505
Cvjetan, 2015, Prevalence and diversity of extended-spectrum-β-lactamase-producing Enterobacteriaceae from marine beach waters, Mar. Pollut. Bull., 90, 60, 10.1016/j.marpolbul.2014.11.021
Wang, 2015, Detection of, NDM-1 carbapenemase-producing Acinetobacter calcoaceticus and Acinetobacter junii in environmental samples from livestock farms, J. Antimicrob. Chemother., 70, 611, 10.1093/jac/dku405
2021, A catchment-scale assessment of the sanitary condition of treated wastewater and river water based on fecal indicators and carbapenem-resistant Acinetobacter spp., Sci. Total Environ., 750, 142266, 10.1016/j.scitotenv.2020.142266
Rizzo, 2013, Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review, Sci. Total Environ., 447, 345, 10.1016/j.scitotenv.2013.01.032
Walters, 2010, Occurrence and loss over three years of 72 pharmaceuticals and personal care products from biosolids-soil mixtures in outdoor mesocosms, Water Res., 44, 6011, 10.1016/j.watres.2010.07.051
Reis, 2016, Biodegradation of antibiotics: The new resistance determinants—Part I, New Biotechnol., 54, 34, 10.1016/j.nbt.2019.08.002
Mitchell, 2015, Hydrolysis of amphenicol and macrolide antibiotics: Chloramphenicol, florfenicol, spiramycin, and tylosin, Chemosphere, 134, 504, 10.1016/j.chemosphere.2014.08.050
Peters, 2007, Photodegradation of pharmaceutical antibiotics on slurry and soil surfaces, Landbauforsch. Volkenrode, 57, 13
2001, Drugs in the environment: Emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources—A review, Chemosphere, 45, 957, 10.1016/S0045-6535(01)00144-8
Carraro, 2016, Hospital effluents management: Chemical, physical, microbiological risks and legislation in different countries, J. Environ. Manag., 168, 185, 10.1016/j.jenvman.2015.11.021
Urbaniak, 2017, The effect of sewage sludge application on soil properties and willow (Salix sp.) cultivation, Sci. Total Environ., 586, 66, 10.1016/j.scitotenv.2017.02.012
Stoll, 2014, Sludge as potential important source of antibiotic resistance genes in both the bacterial and bacteriophage fractions, Environ. Sci. Technol., 48, 7602, 10.1021/es501851s
Munir, 2011, Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan, Water Res., 45, 681, 10.1016/j.watres.2010.08.033
Potron, 2015, Emerging Broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology, Int. J. Antimicrob. Agents., 45, 568, 10.1016/j.ijantimicag.2015.03.001
Tello, 2012, Selective pressure of antibiotic pollution on bacteria of importance to public health, Environ. Health Perspect., 120, 1100, 10.1289/ehp.1104650
Knapp, 2010, Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940, Environ. Sci. Technol., 44, 580, 10.1021/es901221x
Wang, 2017, PAHs accelerate the propoagation of antibiotic resistance genes in coastal water microbial community, Environ. Pollut., 231, 1145, 10.1016/j.envpol.2017.07.067
Hanna, 2018, Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China: Its potential for resistance development and ecological and human risk, Environ. Int., 114, 131, 10.1016/j.envint.2018.02.003
Voigt, 2020, The investigation of antibiotic residues, antibiotic resistance genes and antibiotic-resistant organisms in a drinking water reservoir system in Germany, Int. J. Hyg. Environ. Health, 224, 113449, 10.1016/j.ijheh.2020.113449
Mahmood, A.R., Al-Haideri, H.H., and Hassan, F.M. (2019). Detection of Antibiotics in Drinking Water Treatment Plants in Baghdad City, Iraq. Adv. Public Health, 7851354.
Andersson, 2003, Persistence of antibiotic resistant bacteria, Curr. Opin. Microbiol., 6, 452, 10.1016/j.mib.2003.09.001
Harnisz, 2013, Total resistance of native bacteria as an indicator of changes in the water environment, Environ. Pollut., 174, 85, 10.1016/j.envpol.2012.11.005
Kittinger, C., Kirschner, A., Lipp, M., Baumert, R., Mascher, F., Farnleitner, A.H., and Zarfel, G.E. (2018). Antibiotic Resistance of Acinetobacter spp. Isolates from the River Danube: Susceptibility Stays High. Int. J. Environ. Res. Public Health, 15.
Harmon, 2019, Prevalence and characterization of carbapenem-resistant bacteria in water bodies in the Los Angeles–Southern California area, Microbiologyopen, 8, e00692, 10.1002/mbo3.692
Marti, E., Jofre, J., and Balcazar, J.L. (2013). Prevalence of antibiotic resistance genes and bacterial community composition in a river influenced by a wastewater treatment plant. PLoS ONE, 8.
Sabri, N.A., Schmitt, H., Van der Zaan, B., Gerritsen, H.W., Zuidema, T., Rijnaarts, H.H.M., and Langenhoff, A.A.M. (2018). Prevalence of antibiotics and antibiotic resistance genes in a wastewater effluent-receiving river in The Netherlands. J. Environ. Chem. Eng.
Nelson, 2018, Sunlight-mediated inactivation of health-relevant microorganisms in water: A review of mechanisms and modeling approaches Environmental Science Processes & Impacts. Critical review, Anim. Physiol., 20, 1089
Yoon, 2018, Elimination of transforming activity and gene degradation during UV and UV/H2 O2 treatment of plasmid-encoded antibiotic resistance genes, Environ. Sci. Water Res. Technol., 4, 1239, 10.1039/C8EW00200B
ECDC (European Centre for Disease Prevention and Control), EFSA (European Food Safety Authority), and EMA (European Medicines Agency) (2017). ECDC/EFSA/EMA second joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals—Joint Interagency Antimicrobial Consumption and Resistance Analysis (JIACRA) Report. EFSA J., 15, e04872.
EMA/AMEG (European Medicines Agency—Antimicrobial Advice Ad Hoc Expert Group) (2020, August 10). Answers to the Requests for Scientific Advice on the Impact on Public Health and Animal Health of the Use of Antibiotics in Animals. Available online: http://www.ema.europa.eu/docs/en_GB/document_library/ Other/2014/07/WC500170253.
WHO (2017). Critically Important Antimicrobials for Human Medicine, WHO. Available online: http://apps.who.int/iris/bitstream/10665/255027/1/9789241512220-eng.pdf?ua=1.
O’Neill, J. (2020, August 24). Antimicrobials in Agriculture and the Environment: Reducing Unnecessary Use and Waste. The Review on Antimicrobial Resistance, Available online: https://amr-review. org/sites/default/files/Antimicrobials%20in%20agriculture%20and%20the% 20environment%20-%20Reducing%20unnecessary%20use%20and%20waste.pdf.
McManus, 2002, Antibiotic use in plant agriculture, Annu. Rev. Phytopathol., 40, 443, 10.1146/annurev.phyto.40.120301.093927
Raymann, K., Shaffer, Z., Nancy, A., and Moran, N.A. (2017). Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biol., 15.
Marshall, 2011, Food animals and antimicrobials: Impacts on human health, Clin. Microbiol. Rev., 24, 718, 10.1128/CMR.00002-11
Hong, P.Y., Yannarell, A., and Mackie, R.I. (2011). The Contribution of Antibiotic Residues and Antibiotic Resistance Genes from Livestock Operations to Antibiotic Resistance in the Environment and Food Chain, CABI.
Kariuki, 2013, FAO/WHO Project Report. Improving Food Safety in Meat Value Chains in Kenya, Food Protec. Trends, 33, 172
Marti, 2013, Impact ofmanure fertilization on the abundance of antibiotic-resistant bacteria and frequency of detection ofantibiotic resistance genes in soil and on vegetables at harvest, Appl. Environ. Microbiol., 79, 5701, 10.1128/AEM.01682-13
Capita, 2013, Antibiotic-resistant bacteria: A challenge for the food industry, Crit. Rev. Food Sci. Nutr., 53, 11, 10.1080/10408398.2010.519837
Fessler, 2012, Characterization of methicillin-resistant Staphylococcus aureus CC398 obtained from humans and animals on dairy farms, Vet. Microbiol., 160, 77, 10.1016/j.vetmic.2012.05.005
Kreausukon, 2012, Prevalence, antimicrobial resistance, and molecular characterization of methicillin-resistant Staphylococcus aureus from bulk tank milk of dairy herds, J. Dairy Sci., 95, 4382, 10.3168/jds.2011-5198
Morar, 2015, Occurrence and antimicrobial susceptibility of Salmonella isolates recovered from the pig slaughter process in Romania, J. Infect. Dev. Countr., 9, 99, 10.3855/jidc.5236
2015, Antimicrobial resistant and extended Spectrum β-lactamase producing Escherichia coli in raw cow’s milk, J. Food Protect., 78, 72, 10.4315/0362-028X.JFP-14-250
Valenzuela, 2010, Isolation and identification of Enterococcus faecium from seafoods: Antimicrobial resistance and production of bacteriocin-like substances, Food Microbiol., 27, 955, 10.1016/j.fm.2010.05.033
FAO (2016). The State of World Fisheries and Aquaculture. Contributing to Food Security and Nutrition for All, FAO. Available online: http://www.fao.org/3/a-i5555e.pdf.
FAO (2020, September 02). Fisheries and Aquaculture Department Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture. Available online: http://www.fao.org/3/i1820e/i1820e00.htm.
Cabello, 2006, Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for the environment, Environ. Microbiol., 8, 1137, 10.1111/j.1462-2920.2006.01054.x
Carvalho, E.D., David, G.D., and Silva, R.J. (2012). Antibiotics in Aquaculture—Use, Abuse and Alternatives. Health and Environment in Aquaculture, InTech. Available online: https://www.intechopen.com/books/health-and-environment-in-aquaculture/ antibiotics-in-aquaculture-use-abuse-and-alternatives.
Burridge, 2010, Chemical use in salmon aquaculture: A review of current practices and possible environmental effects, Aquaculture, 306, 7, 10.1016/j.aquaculture.2010.05.020
Cabello, 2013, Antimicrobial use in aquaculture re-examined: Its relevance to antimicrobial resistance and to animal and human health, Environ. Microbiol., 15, 1917, 10.1111/1462-2920.12134
Ryu, 2012, Antimicrobial resistance and resistance genes in Escherichia coli strains isolated from commercial fish and seafood, Int. J. Food Microbiol., 152, 14, 10.1016/j.ijfoodmicro.2011.10.003
Done, 2015, Does the recent growth of aquaculture create antibiotic resistance threats different from those associated with land animal production in agriculture?, AAPS J., 17, 513, 10.1208/s12248-015-9722-z
Yang, 2010, The source of antibiotics in the environment and progress of its ecological impact research, Environ. Sci. Manag., 35, 140
Maron, 2013, Restrictions on antimicrobial use in food animal production: An international regulatory and economic survey, Glob. Health, 9, 11, 10.1186/1744-8603-9-48
ECDPC (2020, September 04). 33000 People Die Every Year Due to Infections with Antibiotic-Resistant Bacteria. Available online: https://www.ecdc.europa.eu/en/news-events/33000-people-die-every-year-due-infections-antibiotic-resistant-bacteria.
CDC (2020, September 04). Antibiotic/Antimicrobial Resistance (AR/AMR), Available online: https://www.cdc.gov/drugresistance/index.html.
Hoffman, 2015, Strategies for achieving global collective action on antimicrobial resistance, Bull. World Health Organ., 93, 867, 10.2471/BLT.15.153171
World Bank (2017). Drug Resistant Infections: A Threat to Our Economic Future, World Bank.
Hoffman, S.J., Outterson, K., Røttingen, J.A., Cars, O., Clift, C., Rizvi, Z., and Zorzet, A. (2015). An international legal framework to address antimicrobial resistance. Bull. World Health Organ., 9366.
Hoffman, 2015, What will it take to address the global threat of antibiotic resistance?, J. Law Med. Ethics, 43, 363, 10.1111/jlme.12253
United Nations General Assembly (2016). Political Declaration of the High-Level Meeting of the General Assembly on Antimicrobial Resistance, United Nations.
G20 Health Ministers (2020, September 05). Berlin Declaration of the G20 Health Ministers: Together Today for a Healthy Tomorrow. Berlin, Germany. Available online: http://www.g20.utoronto.ca/2017/170520-health-en.pdf.
European Parliament Draft Report (2018). On a European One Health Action Plan against Antimicrobial Resistance, AMR. Available online: https://www.europarl.europa.eu/doceo/document/ENVI-PR-613613_EN.pdf.
Davey, 2017, Interventions to improve antibiotic prescribing practices for hospital inpatients, Cochrane Database Syst. Rev., 2, 1465
Rogers Van Katwyk, S., Grimshaw, J.M., Nkangu, M., Nagi, R., Mendelson, M., Taljaard, M., and Hoffman, S.J. (2019). Government policy interventions to reduce human antimicrobial use: A systematic review and evidence map. PLoS Med., 16.