Antimicrobial peptides with cell-penetrating peptide properties and vice versa
Tóm tắt
Từ khóa
Tài liệu tham khảo
Anderson WF (1998) Human gene therapy. Nature 392(6679 Suppl):25–30
Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K, Tomita M (1992) Identification of the bactericidal domain of lactoferrin. Biochimica et Biophysica Acta (BBA) Protein Struct Mol Enzymol 1121(1–2):130–136
Binder H, Lindblom G (2003) Charge-dependent translocation of the trojan peptide penetratin across lipid membranes. Biophys J 85(2):982–995
Blondelle SE, Houghten RA (1991) Hemolytic and antimicrobial activities of the twenty-four individual omission analogues of melittin. Biochemistry 30(19):4671–4678
Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250
Casteels P, Ampe C, Jacobs F, Tempst P (1993) Functional and chemical characterization of hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honeybee (Apis mellifera). J Biol Chem 268(10):7044–7054
Chen C, Brock R, Luh F, Chou PJ, Larrick JW, Huang RF, Huang TH (1995) The solution structure of the active domain of cap18–a lipopolysaccharide binding protein from rabbit leukocytes. FEBS Lett 370(1–2):46–52
Console S, Marty C, Garcia-Echeverria C, Schwendener R, Ballmer-Hofer K (2003) Antennapedia and hiv transactivator of transcription (tat) “Protein transduction domains” Promote endocytosis of high molecular weight cargo upon binding to cell surface glycosaminoglycans. J Biol Chem 278(37):35109–35114
Derossi D, Joliot AH, Chassaing G, Prochiantz A (1994) The third helix of the antennapedia homeodomain translocates through biological membranes. J Biol Chem 269(14):10444–10450
Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G, Prochiantz A (1996) Cell internalization of the third helix of the antennapedia homeodomain is receptor-independent. J Biol Chem 271(30):18188–18193
Deshayes S, Heitz A, Morris MC, Charnet P, Divita G, Heitz F (2004) Insight into the mechanism of internalization of the cell-penetrating carrier peptide pep-1 through conformational analysis. Biochemistry 43(6):1449–1457
Dubikovskaya EA, Thorne SH, Pillow TH, Contag CH, Wender PA (2008) Overcoming multidrug resistance of small-molecule therapeutics through conjugation with releasable octaarginine transporters. Proc Natl Acad Sci 105(34):12128–12133
Duchardt F, Fotin-Mleczek M, Schwarz H, Fischer R, Brock R (2007) A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic 8(7):848–866
Duchardt F, Ruttekolk IR, Verdurmen WPR, Lortat-Jacob H, Burck J, Hufnagel HR, Fischer R, van den Heuvel M, Lowik DWPM, Vuister GW, Ulrich A, de Waard M, Brock R (2009) A cell-penetrating peptide derived from human lactoferrin with conformation-dependent uptake efficiency. J Biol Chem 284(52):36099–36108
El-Andaloussi S, Holm T, Langel U (2005) Cell-penetrating peptides: mechanisms and applications. Curr Pharm Des 11(28):3597–3611
Elmquist A, Lindgren M, Bartfai T, Langel U (2001) Ve-cadherin-derived cell-penetrating peptide, pvec, with carrier functions. Exp Cell Res 269(2):237–244
Fernandez DI, Gehman JD, Separovic F (2009) Membrane interactions of antimicrobial peptides from australian frogs. Biochimica et Biophysica Acta (BBA) Biomembr 1788(8):1630–1638
Fischer R, Fotin-Mleczek M, Hufnagel H, Brock R (2005) Break on through to the other side-biophysics and cell biology shed light on cell-penetrating peptides. Chembiochem 6(12):2126–2142
Frank RW, Gennaro R, Schneider K, Przybylski M, Romeo D (1990) Amino acid sequences of two proline-rich bactenecins. Antimicrobial peptides of bovine neutrophils. J Biol Chem 265(31):18871–18874
Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55(6):1189–1193
Gennaro R, Skerlavaj B, Romeo D (1989) Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophils. Infect Immun 57(10):3142–3146
Gifford JL, Hunter HN, Vogel HJ (2005) Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell Mol Life Sci 62(22):2588–2598
González-Chávez SA, Arévalo-Gallegos S, Rascón-Cruz Q (2009) Lactoferrin: structure, function and applications. Int J Antimicrob Agents 33(4):301.e301–301.e308
Hancock REW (2001) Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis 1(3):156–164
Henriques ST, Castanho MA (2004) Consequences of nonlytic membrane perturbation to the translocation of the cell penetrating peptide pep-1 in lipidic vesicles. Biochemistry 43(30):9716–9724
Henriques ST, Costa J, Castanho MA (2005) Translocation of beta-galactosidase mediated by the cell-penetrating peptide pep-1 into lipid vesicles and human hela cells is driven by membrane electrostatic potential. Biochemistry 44(30):10189–10198
Henriques ST, Melo MN, Castanho MA (2006) Cell-penetrating peptides and antimicrobial peptides: how different are they? Biochem J 399(1):1–7
Henzler Wildman KA, Lee D-K, Ramamoorthy A (2003) Mechanism of lipid bilayer disruption by the human antimicrobial peptide, ll-37. Biochemistry 42(21):6545–6558
Hristova K, Dempsey CE, White SH (2001) Structure, location, and lipid perturbations of melittin at the membrane interface. Biophys J 80(2):801–811
Järver P, Langel Ü (2006) Cell-penetrating peptides–a brief introduction. Biochimica et Biophysica Acta (BBA) Biomembr 175(3):260–263
Järver P, Mager I, Langel U (2010) In vivo biodistribution and efficacy of peptide mediated delivery. Trends Pharmacol Sci (in press)
Jelinek R, Kolusheva S (2005) Membrane interactions of host-defense peptides studied in model systems. Curr Protein Pept Sci 6(1):103–114
Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19(3):491–511
Jiao CY, Delaroche D, Burlina F, Alves ID, Chassaing G, Sagan S (2009) Translocation and endocytosis for cell-penetrating peptide internalization. J Biol Chem 284(49):33957–33965
Jung HJ, Park Y, Hahm KS, Lee DG (2006) Biological activity of tat (47–58) peptide on human pathogenic fungi. Biochem Biophys Res Commun 345(1):222–228
Jung HJ, Jeong KS, Lee DG (2008) Effective antibacterial action of tat (47–58) by increased uptake into bacterial cells in the presence of trypsin. J Microbiol Biotechnol 18(5):990–996
Koczulla AR, Bals R (2003) Antimicrobial peptides: current status and therapeutic potential. Drugs 63(4):389–406
Kokryakov VN, Harwig SS, Panyutich EA, Shevchenko AA, Aleshina GM, Shamova OV, Korneva HA, Lehrer RI (1993) Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett 327(2):231–236
Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos L Jr (2001a) The antibacterial peptide pyrrhocoricin inhibits the atpase actions of dnak and prevents chaperone-assisted protein folding. Biochemistry 40(10):3016–3026
Kragol G, Otvos L Jr, Feng J, Gerhard W, Wade JD (2001b) Synthesis of a disulfide-linked octameric peptide construct carrying three different antigenic determinants. Bioorg Med Chem Lett 11(11):1417–1420
Langer M, Kratz F, Rothen-Rutishauser B, Wunderli-Allenspach H, Beck-Sickinger AG (2001) Novel peptide conjugates for tumor-specific chemotherapy. J Med Chem 44(9):1341–1348
Larrick JW, Hirata M, Shimomoura Y, Yoshida M, Zheng H, Zhong J, Wright SC (1993) Antimicrobial activity of rabbit cap18-derived peptides. Antimicrob Agents Chemother 37(12):2534–2539
Lau YE, Rozek A, Scott MG, Goosney DL, Davidson DJ, Hancock RE (2005) Interaction and cellular localization of the human host defense peptide ll-37 with lung epithelial cells. Infect Immun 73(1):583–591
Lehrer RI, Ganz T (1999) Antimicrobial peptides in mammalian and insect host defence. Curr Opin Immunol 11(1):23–27
Lehrer RI, Ganz T (2002) Cathelicidins: a family of endogenous antimicrobial peptides. Curr Opin Hematol 9(1):18–22
Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18(4):410–414
Lindgren M, Hallbrink M, Prochiantz A, Langel U (2000) Cell-penetrating peptides. Trends Pharmacol Sci 21(3):99–103
Lindgren M, Rosenthal-Aizman K, Saar K, Eiríksdóttir E, Jiang Y, Sassian M, Östlund P, Hällbrink M, Langel Ü (2006) Overcoming methotrexate resistance in breast cancer tumour cells by the use of a new cell-penetrating peptide. Biochem Pharmacol 71(4):416–425
Mangoni ME, Aumelas A, Charnet P, Roumestand C, Chiche L, Despaux E, Grassy G, Calas B, Chavanieu A (1996) Change in membrane permeability induced by protegrin 1: implication of disulphide bridges for pore formation. FEBS Lett 383(1–2):93–98
Matsuzaki K (1999) Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta 1462(1–2):1–10
Matsuzaki K, Murase O, Fujii N, Miyajima K (1995) Translocation of a channel-forming antimicrobial peptide, magainin 2, across lipid bilayers by forming a pore. Biochemistry 34(19):6521–6526
Morris MC, Vidal P, Chaloin L, Heitz F, Divita G (1997) A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res 25(14):2730–2736
Morris MC, Depollier J, Mery J, Heitz F, Divita G (2001) A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol 19(12):1173–1176
Nakase I, Niwa M, Takeuchi T, Sonomura K, Kawabata N, Koike Y, Takehashi M, Tanaka S, Ueda K, Simpson JC, Jones AT, Sugiura Y, Futaki S (2004) Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Mol Ther 10(6):1011–1022
Nekhotiaeva N, Elmquist A, Rajarao GK, Hallbrink M, Langel U, Good L (2004) Cell entry and antimicrobial properties of eukaryotic cell-penetrating peptides. FASEB J 18(2):394–396
Neundorf I, Hoyer J, Splith K, Rennert R, Peindy N’dongo H W, Schatzschneider U (2008) Cymantrene conjugation modulates the intracellular distribution and induces high cytotoxicity of a cell-penetrating peptide. Chem Commun (Camb) (43):5604–5606
Neundorf I, Rennert R, Hoyer J, Schramm F, Löbner K, Kitanovic I, Wölfl S (2009) Fusion of a short ha2-derived peptide sequence to cell-penetrating peptides improves cytosolic uptake, but enhances cytotoxic activity. Pharmaceuticals 2(2):49–65
Nori A, Jensen KD, Tijerina M, Kopeckova P, Kopecek J (2003) Tat-conjugated synthetic macromolecules facilitate cytoplasmic drug delivery to human ovarian carcinoma cells. Bioconjug Chem 14(1):44–50
Oehlke J, Scheller A, Wiesner B, Krause E, Beyermann M, Klauschenz E, Melzig M, Bienert M (1998) Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim Biophys Acta 1414(1–2):127–139
Oren Z, Lerman JC, Gudmundsson GH, Agerberth B, Shai Y (1999) Structure and organization of the human antimicrobial peptide ll-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem J 341(Pt 3):501–513
Otvos L Jr (2005) Antibacterial peptides and proteins with multiple cellular targets. J Pept Sci 11(11):697–706
Otvos L Jr, Bokonyi K, Varga I, Otvos BI, Hoffmann R, Ertl HC, Wade JD, McManus AM, Craik DJ, Bulet P (2000) Insect peptides with improved protease-resistance protect mice against bacterial infection. Protein Sci 9(4):742–749
Otvos L, Cudic M, Chua BY, Deliyannis G, Jackson DC (2004) An insect antibacterial peptide-based drug delivery system. Mol Pharm 1(3):220–232
Palm C, Netzereab S, Hallbrink M (2006) Quantitatively determined uptake of cell-penetrating peptides in non-mammalian cells with an evaluation of degradation and antimicrobial effects. Peptides 27(7):1710–1716
Park CB, Kim HS, Kim SC (1998) Mechanism of action of the antimicrobial peptide buforin ii: buforin ii kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun 244(1):253–257
Pokorny A, Birkbeck TH, Almeida PF (2002) Mechanism and kinetics of delta-lysin interaction with phospholipid vesicles. Biochemistry 41(36):11044–11056
Pooga M, Kut C, Kihlmark M, Hallbrink M, Fernaeus S, Raid R, Land T, Hallberg E, Bartfai T, Langel U (2001) Cellular translocation of proteins by transportan. FASEB J 15(8):1451–1453
Powers J-PS, Hancock REW (2003) The relationship between peptide structure and antibacterial activity. Peptides 24(11):1681–1691
Powers JP, Tan A, Ramamoorthy A, Hancock RE (2005) Solution structure and interaction of the antimicrobial polyphemusins with lipid membranes. Biochemistry 44(47):15504–15513
Räägel H, Säälik P, Hansen M, Langel Ü, Pooga M (2009) Cpp-protein constructs induce a population of non-acidic vesicles during trafficking through endo-lysosomal pathway. J Control Release 139(2):108–117
Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, Chernomordik LV, Lebleu B (2003) Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem 278(1):585–590
Romeo D, Skerlavaj B, Bolognesi M, Gennaro R (1988) Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils. J Biol Chem 263(20):9573–9575
Rousselle C, Clair P, Lefauconnier JM, Kaczorek M, Scherrmann JM, Temsamani J (2000) New advances in the transport of doxorubicin through the blood-brain barrier by a peptide vector-mediated strategy. Mol Pharmacol 57(4):679–686
Rousselle C, Smirnova M, Clair P, Lefauconnier JM, Chavanieu A, Calas B, Scherrmann JM, Temsamani J (2001) Enhanced delivery of doxorubicin into the brain via a peptide-vector-mediated strategy: saturation kinetics and specificity. J Pharmacol Exp Ther 296(1):124–131
Sadler K, Eom KD, Yang JL, Dimitrova Y, Tam JP (2002) Translocating proline-rich peptides from the antimicrobial peptide bactenecin 7. Biochemistry 41(48):14150–14157
Said Hassane F, Saleh AF, Abes R, Gait MJ, Lebleu B (2010) Cell penetrating peptides: overview and applications to the delivery of oligonucleotides. Cell Mol Life Sci 67(5):715–726
Sandgren S, Wittrup A, Cheng F, Jonsson M, Eklund E, Busch S, Belting M (2004) The human antimicrobial peptide ll-37 transfers extracellular DNA plasmid to the nuclear compartment of mammalian cells via lipid rafts and proteoglycan-dependent endocytosis. J Biol Chem 279(17):17951–17956
Scheller A, Oehlke J, Wiesner B, Dathe M, Krause E, Beyermann M, Melzig M, Bienert M (1999) Structural requirements for cellular uptake of alpha-helical amphipathic peptides. J Pept Sci 5(4):185–194
Simeoni F, Morris MC, Heitz F, Divita G (2003) Insight into the mechanism of the peptide-based gene delivery system mpg: Implications for delivery of sirna into mammalian cells. Nucleic Acids Res 31(11):2717–2724
Skerlavaj B, Romeo D, Gennaro R (1990) Rapid membrane permeabilization and inhibition of vital functions of gram-negative bacteria by bactenecins. Infect Immun 58(11):3724–3730
Sokolov Y, Mirzabekov T, Martin DW, Lehrer RI, Kagan BL (1999) Membrane channel formation by antimicrobial protegrins. Biochim Biophys Acta 1420(1–2):23–29
Splith K, Hu W, Schatzschneider U, Gust R, Ott I, Onambele LA, Prokop A, Neundorf I (2010a) Protease-activatable organometal-peptide bioconjugates with enhanced cytotoxicity on cancer cells. Bioconjug Chem 21(7):1288–1296
Splith K, Neundorf I, Hu W, N’Dongo HWP, Vasylyeva V, Merz K, Schatzschneider U (2010b) Influence of the metal complex-to-peptide linker on the synthesis and properties of bioactive cpmn(co)3 peptide conjugates. Dalton Trans 39(10):2536–2545
Steinberg DA, Hurst MA, Fujii CA, Kung AH, Ho JF, Cheng FC, Loury DJ, Fiddes JC (1997) Protegrin-1: a broad-spectrum, rapidly microbicidal peptide with in vivo activity. Antimicrob Agents Chemother 41(8):1738–1742
Steiner H, Hultmark D, Engstrom A, Bennich H, Boman HG (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292(5820):246–248
Steiner V, Schar M, Bornsen KO, Mutter M (1991) Retention behaviour of a template-assembled synthetic protein and its amphiphilic building blocks on reversed-phase columns. J Chromatogr 586(1):43–50
Takeshima K, Chikushi A, Lee KK, Yonehara S, Matsuzaki K (2003) Translocation of analogues of the antimicrobial peptides magainin and buforin across human cell membranes. J Biol Chem 278(2):1310–1315
Tani A, Lee S, Oishi O, Aoyagi H, Ohno M (1995) Interaction of the fragments characteristic of bactenecin 7 with phospholipid bilayers and their antimicrobial activity. J Biochem 117(3):560–565
Tomasinsig L, Skerlavaj B, Papo N, Giabbai B, Shai Y, Zanetti M (2006) Mechanistic and functional studies of the interaction of a proline-rich antimicrobial peptide with mammalian cells. J Biol Chem 281(1):383–391
Torchilin VP, Rammohan R, Weissig V, Levchenko TS (2001) Tat peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci USA 98(15):8786–8791
Tossi A, Scocchi M, Skerlavaj B, Gennaro R (1994) Identification and characterization of a primary antibacterial domain in cap18, a lipopolysaccharide binding protein from rabbit leukocytes. FEBS Lett 339(1–2):108–112
Tossi A, Sandri L, Giangaspero A (2000) Amphipathic, alpha-helical antimicrobial peptides. Biopolymers 55(1):4–30
Tünnemann G, Martin RM, Haupt S, Patsch C, Edenhofer F, Cardoso MC (2006) Cargo-dependent mode of uptake and bioavailability of tat-containing proteins and peptides in living cells. FASEB J 20(11):1775–1784
Turner J, Cho Y, Dinh NN, Waring AJ, Lehrer RI (1998) Activities of ll-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother 42(9):2206–2214
Vives E, Brodin P, Lebleu B (1997) A truncated hiv-1 tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272(25):16010–16017
Vives E, Richard JP, Rispal C, Lebleu B (2003) Tat peptide internalization: seeking the mechanism of entry. Curr Protein Pept Sci 4(2):125–132
Vives E, Schmidt J, Pelegrin A (2008) Cell-penetrating and cell-targeting peptides in drug delivery. Biochim Biophys Acta 1786(2):126–138
Walther C, Meyer K, Rennert R, Neundorf I (2008) Quantum dot-carrier peptide conjugates suitable for imaging and delivery applications. Bioconjug Chem 19(12):2346–2356
Walther C, Ott I, Gust R, Neundorf I (2009) Specific labeling with potent radiolabels alters the uptake of cell-penetrating peptides. Biopolymers 92(5):445–451
Wong TK, Neumann E (1982) Electric field mediated gene transfer. Biochem Biophys Res Commun 107(2):584–587
Zhang L, Rozek A, Hancock RE (2001) Interaction of cationic antimicrobial peptides with model membranes. J Biol Chem 276(38):35714–35722
Zhang X, Oglecka K, Sandgren S, Belting M, Esbjörner EK, Nordén B, Gräslund A (2010) Dual functions of the human antimicrobial peptide ll-37–target membrane perturbation and host cell cargo delivery. Biochim Biophys Acta 1798(12):2201–2208
Zhao M, Kircher MF, Josephson L, Weissleder R (2002) Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconjug Chem 13(4):840–844
Zhao H, Sood R, Jutila A, Bose S, Fimland G, Nissen-Meyer J, Kinnunen PK (2006) Interaction of the antimicrobial peptide pheromone plantaricin a with model membranes: implications for a novel mechanism of action. Biochim Biophys Acta 1758(9):1461–1474
Zhu WL, Shin SY (2009a) Antimicrobial and cytolytic activities and plausible mode of bactericidal action of the cell penetrating peptide penetratin and its lys-linked two-stranded peptide. Chem Biol Drug Des 73(2):209–215
Zhu WL, Shin SY (2009b) Effects of dimerization of the cell-penetrating peptide tat analog on antimicrobial activity and mechanism of bactericidal action. J Pept Sci 15(5):345–352