Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?
Tóm tắt
Từ khóa
Tài liệu tham khảo
Skarnes, R. C. & Watson, D. W. Antimicrobial factors of normal tissues and fluids. Bacteriol. Rev. 21, 273?294 (1957). An excellent description of the observations of early investigators, who not only demonstrated the existence of antimicrobial substances in normal tissues and fluids, but proposed that they aid allied mechanisms of natural and adaptive immunity.
Fleming, A. On a remarkable bacteriolytic element found in tissues and secretions. Proc. R. Soc. London. B Biol. Sci. 93, 306?317 (1922).
Hirsch, J. G. Phagocytin: a bactericidal substance from polymorphonuclear leucocytes. J. Exp. Med. 103, 589?611 (1956).
Zeya, H. I. & Spitznagel, J. K. Antibacterial and enzymic basic proteins from leukocyte lysosomes: separation and identification. Science 142, 1085?1087 (1963).
Friedberg, D., Friedberg, I. & Shilo, M. Interaction of Gram-negative bacteria with the lysosomal fraction of polymorphonuclear leukocytes. II. Changes in the cell envelope of Escherichia coli. Infect. Immun. 1, 311?331 (1970).
Friedberg, D. & Shilo, M. Interaction of Gram-negative bacteria with the lysosomal fraction of polymorphonuclear leukocytes. I. Role of cell wall composition of Salmonella typhimurium. Infect. Immun. 1, 305?318 (1970).
Weiss, J., Franson, R. C., Beckerdite, S., Schmeidler, K. & Elsbach, P. Partial characterization and purification of a rabbit granulocyte factor that increases permeability of Escherichia coli. J. Clin. Invest. 55, 33?42 (1975).
Steiner, H., Hultmark, D., Engstrom, A., Bennich, H. & Boman, H. G. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292, 246?248 (1981).
Zasloff, M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl Acad. Sci. USA 84, 5449?5453 (1987).
Ganz, T. Defensins: antimicrobial peptides of innate immunity. Nature Rev. Immunol. 3, 710?720 (2003). A comprehensive overview of the definition, structure, distribution, synthesis, regulation and activity of neutrophil defensins, Paneth cell defensins and epithelial cell defensins.
Lehrer, R. I. Primate defensins. Nature Rev. Microbiol. 2, 727?738 (2004). A detailed and specific review on the characteristics of defensins from primates.
Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 415, 389?395 (2002). A broad overview of antimicrobial peptides, highlighting their diversity, mechanisms of activity, regulation in insects, vertebrates and plants, and their roles in health and disease.
Brogden, K. A., Ackermann, M., McCray, P. B. & Tack, B. F. Antimicrobial peptides in animals and their role in host defences. Int. J. Antimicrob. Agents 22, 465?478 (2003). A detailed review of antimicrobial peptides in livestock and poultry.
Vizioli, J. & Salzet, M. Antimicrobial peptides from animals: focus on invertebrates. Trends Pharmacol. Sci. 23, 494?496 (2002).
Cole, A. M. et al. Cutting edge: IFN-inducible ELR-CXC chemokines display defensin-like antimicrobial activity. J. Immunol. 167, 623?627 (2001).
Tang, Y. Q., Yeaman, M. R. & Selsted, M. E. Antimicrobial peptides from human platelets. Infect. Immun. 70, 6524?6533 (2002).
Yang, D. et al. Many chemokines including CCL20/MIP-3α display antimicrobial activity. J. Leukoc. Biol. 74, 448?455 (2003).
Kowalska, K., Carr, D. B. & Lipkowski, A. W. Direct antimicrobial properties of substance P. Life Sci. 71, 747?750 (2002).
Allaker, R. P. & Kapas, S. Adrenomedullin and mucosal defence: interaction between host and microorganism. Regul. Pept. 112, 147?152 (2003).
Kuwata, H., Yip, T. T., Yip, C. L., Tomita, M. & Hutchens, T. W. Bactericidal domain of lactoferrin: detection, quantitation, and characterization of lactoferricin in serum by SELDI affinity mass spectrometry. Biochem. Biophys. Res. Commun. 245, 764?773 (1998).
Pellegrini, A., Thomas, U., Bramaz, N., Hunziker, P. & von Fellenberg, R. Isolation and identification of three bactericidal domains in the bovine α-lactalbumin molecule. Biochim. Biophys. Acta 1426, 439?448 (1999).
Liepke, C. et al. Human hemoglobin-derived peptides exhibit antimicrobial activity: a class of host defense peptides. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 791, 345?356 (2003).
Finlay, B. B. & Hancock, R. E. Can innate immunity be enhanced to treat microbial infections? Nature Rev. Microbiol. 2, 497?504 (2004).
Hancock, R. E. & Patrzykat, A. Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics. Curr. Drug Targets Infect. Disord. 2, 79?83 (2002).
Gennaro, R. & Zanetti, M. Structural features and biological activities of the cathelicidin-derived antimicrobial peptides. Biopolymers 55, 31?49 (2000).
Boman, H. G. Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol. 13, 61?92 (1995). A comprehensive review describing the chemical and biochemical characteristics of antimicrobial peptides, their gene structures and biosynthesis, their mechanisms of action and their future role as therapeutic agents.
Brogden, K. A., Ackermann, M. & Huttner, K. M. Detection of anionic antimicrobial peptides in ovine bronchoalveolar lavage fluid and respiratory epithelium. Infect. Immun. 66, 5948?5954 (1998).
Brogden, K. A., De Lucca, A. J., Bland, J. & Elliott, S. Isolation of an ovine pulmonary surfactant-associated anionic peptide bactericidal for Pasteurella haemolytica. Proc. Natl Acad. Sci. USA 93, 412?416 (1996).
Brogden, K. A., Ackermann, M. R., McCray, P. B. Jr & Huttner, K. M. Differences in the concentrations of small, anionic, antimicrobial peptides in bronchoalveolar lavage fluid and in respiratory epithelia of patients with and without cystic fibrosis. Infect. Immun. 67, 4256?4259 (1999).
Brogden, K. A., Ackermann, M. & Huttner, K. M. Small, anionic, and charge-neutralizing propeptide fragments of zymogens are antimicrobial. Antimicrob. Agents Chem. 41, 1615?1617 (1997).
Tossi, A., Sandri, L. & Giangaspero, A. Amphipathic, α-helical antimicrobial peptides. Biopolymers 55, 4?30 (2000). A broad overview of the α-helical antimicrobial peptides from invertebrates, fish, amphibians and mammals, including the structural and physicochemical parameters that modulate their activity and specificity.
Johansson, J., Gudmundsson, G. H., Rottenberg, M. E., Berndt, K. D. & Agerberth, B. Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J. Biol. Chem. 273, 3718?3724 (1998).
Park, C. B., Yi, K. S., Matsuzaki, K., Kim, M. S. & Kim, S. C. Structure?activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc. Natl Acad. Sci. USA 97, 8245?8250 (2000).
Otvos, L., Jr. The short proline-rich antibacterial peptide family. Cell. Mol. Life Sci. 59, 1138?1150 (2002). A specific overview of the short proline-rich antimicrobial peptides from insects.
Lehrer, R. I., Lichtenstein, A. K. & Ganz, T. Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu. Rev. Immunol. 11, 105?128 (1993).
Schutte, B. C. & McCray, P. B. Jr. β-defensins in lung host defense. Annu. Rev. Physiol. 64, 709?748 (2002).
Tang, Y. Q. et al. A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated α-defensins. Science 286, 498?502 (1999).
Weiss, T. M. et al. Two states of cyclic antimicrobial peptide RTD-1 in lipid bilayers. Biochemistry 41, 10070?10076 (2002).
von Horsten, H. H., Schafer, B. & Kirchhoff, C. SPAG11/isoform HE2C, an atypical anionic β-defensin-like peptide. Peptides 25, 1223?1233 (2004).
Kalfa, V. C. et al. Congeners of SMAP29 kill ovine pathogens and induce ultrastructural damage in bacterial cells. Antimicrob. Agents Chemother. 45, 3256?3261 (2001).
Lehrer, R. I. et al. Interaction of human defensins with Escherichia coli Mechanism of bactericidal activity. J. Clin. Invest. 84, 553?561 (1989).
Yenugu, S., Hamil, K. G., Radhakrishnan, Y., French, F. S. & Hall, S. H. The androgen-regulated epididymal sperm-binding protein, human β-defensin 118 (DEFB118) (formerly ESC42), is an antimicrobial β-defensin. Endocrinology 145, 3165?3173 (2004).
Ladokhin, A. S., Selsted, M. E. & White, S. H. Sizing membrane pores in lipid vesicles by leakage of co-encapsulated markers: pore formation by melittin. Biophys. J. 72, 1762?1766 (1997).
Matsuzaki, K., Yoneyama, S. & Miyajima, K. Pore formation and translocation of melittin. Biophys. J. 73, 831?838 (1997).
Kang, J. H., Shin, S. Y., Jang, S. Y., Lee, M. K. & Hahm, K. S. Release of aqueous contents from phospholipid vesicles induced by cecropin A (1?8) magainin 2 (1?12) hybrid and its analogues. J. Peptide Res. 52, 45?50 (1998).
Hristova, K., Selsted, M. E. & White, S. H. Critical role of lipid composition in membrane permeabilization by rabbit neutrophil defensins. J. Biol. Chem. 272, 24224?24233 (1997).
Zhao, H., Mattila, J. P., Holopainen, J. M. & Kinnunen, P. K. Comparison of the membrane association of two antimicrobial peptides, magainin 2 and indolicidin. Biophys. J. 81, 2979?2991 (2001).
Matsuzaki, K., Murase, O. & Miyajima, K. Kinetics of pore formation by an antimicrobial peptide, magainin 2, in phospholipid bilayers. Biochemistry 34, 12553?12559 (1995).
Christensen, B., Fink, J., Merrifield, R. B. & Mauzerall, D. Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc. Natl Acad. Sci. USA 85, 5072?5076 (1988). An early report suggesting that the broad antibacterial activity of cecropins is due to formation of large time-variant and voltage-dependent ion channels in planar lipid membranes.
Lockey, T. D. & Ourth, D. D. Formation of pores in Escherichia coli cell membranes by a cecropin isolated from hemolymph of Heliothis virescens larvae. Eur. J. Biochem. 236, 263?271 (1996).
Kagan, B. L., Selsted, M. E., Ganz, T. & Lehrer, R. I. Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes. Proc. Natl Acad. Sci. USA 87, 210?214 (1990).
Lee, M. T., Chen, F. Y. & Huang, H. W. Energetics of pore formation induced by membrane active peptides. Biochemistry 43, 3590?3599 (2004). Describes how variations in the peptide-to-lipid ratio might be closely related to the efficacy of antimicrobial peptides against different cell types.
Wu, Y., Huang, H. W. & Olah, G. A. Method of oriented circular dichroism. Biophys. J. 57, 797?806 (1990).
Ladokhin, A. S., Selsted, M. E. & White, S. H. Bilayer interactions of indolicidin, a small antimicrobial peptide rich in tryptophan, proline, and basic amino acids. Biophys. J. 72, 794?805 (1997).
Oishi, O. et al. Conformations and orientations of aromatic amino acid residues of tachyplesin I in phospholipid membranes. Biochemistry 36, 4352?4359 (1997).
Turner, J., Cho, Y., Dinh, N. N., Waring, A. J. & Lehrer, R. I. Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob. Agents Chemother. 42, 2206?2214 (1998).
Mor, A., Amiche, M. & Nicolas, P. Structure, synthesis, and activity of dermaseptin b, a novel vertebrate defensive peptide from frog skin: relationship with adenoregulin. Biochemistry 33, 6642?6650 (1994).
Bechinger, B. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochim. Biophys. Acta 1462, 157?183 (1999). Reviews the solid-state NMR structural studies of membrane-active peptides, showing that many have amphipathic α-helical conformations and alignments of the helical axis parallel to the membrane surface.
Yamaguchi, S., Hong, T., Waring, A., Lehrer, R. I. & Hong, M. Solid-state NMR investigations of peptide?lipid interaction and orientation of a β-sheet antimicrobial peptide, protegrin. Biochemistry 41, 9852?9862 (2002). Describes the use of solid-state NMR to determine the orientation of protegrin-1.
Bechinger, B., Zasloff, M. & Opella, S. J. Structure and orientation of the antibiotic peptide magainin in membranes by solid-state nuclear magnetic resonance spectroscopy. Protein Sci. 2, 2077?2084 (1993).
Yamaguchi, S. et al. Orientation and dynamics of an antimicrobial peptide in the lipid bilayer by solid-state NMR spectroscopy. Biophys. J. 81, 2203?2214 (2001). Describes the use of solid-state NMR to determine the orientation of ovispirin in synthetic phospholipids.
Henzler Wildman, K. A., Lee, D. K. & Ramamoorthy, A. Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. Biochemistry 42, 6545?6558 (2003).
Buffy, J. J. et al. Solid-state NMR investigation of the selective perturbation of lipid bilayers by the cyclic antimicrobial peptide RTD-1. Biochemistry 43, 9800?9812 (2004).
Spaar, A., Munster, C. & Salditt, T. Conformation of peptides in lipid membranes studied by X-ray grazing incidence scattering. Biophys. J. 87, 396?407 (2004).
He, K., Ludtke, S. J., Huang, H. W. & Worcester, D. L. Antimicrobial peptide pores in membranes detected by neutron in-plane scattering. Biochemistry 34, 15614?15618 (1995).
Yang, L., Harroun, T. A., Heller, W. T., Weiss, T. M. & Huang, H. W. Neutron off-plane scattering of aligned membranes. I. Method of measurement. Biophys. J. 75, 641?645 (1998).
Yang, L., Weiss, T. M., Harroun, T. A., Heller, W. T. & Huang, H. W. Supramolecular structures of peptide assemblies in membranes by neutron off-plane scattering: method of analysis. Biophys. J. 77, 2648?2656 (1999).
Chen, F. Y., Lee, M. T. & Huang, H. W. Evidence for membrane thinning effect as the mechanism for peptide-induced pore formation. Biophys. J. 84, 3751?3758 (2003).
Boman, H. G., Agerberth, B. & Boman, A. Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect. Immun. 61, 2978?2984 (1993).
Silvestro, L., Gupta, K., Weiser, J. N. & Axelsen, P. H. The concentration-dependent membrane activity of cecropin A. Biochemistry. 36, 11452?11460 (1997).
Scott, M. G., Yan, H. & Hancock, R. E. Biological properties of structurally related α-helical cationic antimicrobial peptides. Infect. Immun. 67, 2005?2009 (1999).
Scott, M. G., Gold, M. R. & Hancock, R. E. Interaction of cationic peptides with lipoteichoic acid and gram- positive bacteria. Infect. Immun. 67, 6445?6453 (1999).
Huang, H. W. Action of antimicrobial peptides: two-state model. Biochemistry 39, 8347?8352 (2000). Discusses the two-state model for the action of helical and β-sheet antimicrobial peptides. .
Ludtke, S., He, K. & Huang, H. Membrane thinning caused by magainin 2. Biochemistry 34, 16764?16769 (1995).
Heller, W. T. et al. Membrane thinning effect of the β-sheet antimicrobial protegrin. Biochemistry 39, 139?145 (2000).
Wu, Y., He, K., Ludtke, S. J. & Huang, H. W. X-ray diffraction study of lipid bilayer membranes interacting with amphiphilic helical peptides: diphytanoyl phosphatidylcholine with alamethicin at low concentrations. Biophys. J. 68, 2361?2369 (1995).
Yang, L., Harroun, T. A., Weiss, T. M., Ding, L. & Huang, H. W. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys. J. 81, 1475?1485 (2001).
Ehrenstein, G. & Lecar, H. Electrically gated ionic channels in lipid bilayers. Q. Rev. Biophys. 10, 1?34 (1977).
He, K., Ludtke, S. J., Worcester, D. L. & Huang, H. W. Neutron scattering in the plane of membranes: structure of alamethicin pores. Biophys. J. 70, 2659?2666 (1996).
Cantor, R. S. Size distribution of barrel-stave aggregates of membrane peptides: influence of the bilayer lateral pressure profile. Biophys. J. 82, 2520?2525 (2002).
Pouny, Y., Rapaport, D., Mor, A., Nicolas, P. & Shai, Y. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry 31, 12416?12423 (1992).
Shai, Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta 1462, 55?70 (1999).
Ladokhin, A. S. & White, S. H. 'Detergent-like' permeabilization of anionic lipid vesicles by melittin. Biochim. Biophys. Acta 1514, 253?260 (2001).
Oren, Z. & Shai, Y. Mode of action of linear amphipathic α-helical antimicrobial peptides. Biopolymers 47, 451?463 (1998). An overview with good illustrations that presents the barrel-stave and carpet-like mechanisms of membrane permeation by amphipathic α-helical peptides.
Matsuzaki, K., Murase, O., Fujii, N. & Miyajima, K. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 35, 11361?11368 (1996).
Hallock, K. J., Lee, D. K. & Ramamoorthy, A. MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Biophys. J. 84, 3052?3060 (2003).
Matsuzaki, K. et al. Relationship of membrane curvature to the formation of pores by magainin 2. Biochemistry 37, 11856?11863 (1998).
Matsuzaki, K., Sugishita, K., Harada, M., Fujii, N. & Miyajima, K. Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria. Biochim. Biophys. Acta 1327, 119?130 (1997).
Fujii, G., Selsted, M. E. & Eisenberg, D. Defensins promote fusion and lysis of negatively charged membranes. Protein Sci. 2, 1301?1312 (1993).
Wimley, W. C., Selsted, M. E. & White, S. H. Interactions between human defensins and lipid bilayers: evidence for formation of multimeric pores. Protein Sci. 3, 1362?1373 (1994).
Cociancich, S., Ghazi, A., Hetru, C., Hoffmann, J. A. & Letellier, L. Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. J. Biol. Chem. 268, 19239?19245 (1993).
Takeuchi, K. et al. Channel-forming membrane permeabilization by an antibacterial protein, sapecin: determination of membrane-buried and oligomerization surfaces by NMR. J. Biol. Chem. 279, 4981?4987 (2004).
Dathe, M. & Wieprecht, T. Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim. Biophys. Acta 1462, 71?87 (1999).
Dathe, M. et al. General aspects of peptide selectivity towards lipid bilayers and cell membranes studied by variation of the structural parameters of amphipathic helical model peptides. Biochim. Biophys. Acta 1558, 171?186 (2002).
Duclohier, H. Anion pores from magainins and related defensive peptides. Toxicology 87, 175?188 (1994).
Juretic, D. et al. Magainin 2 amide and analogues. Antimicrobial activity, membrane depolarization and susceptibility to proteolysis. FEBS Lett. 249, 219?223 (1989).
Westerhoff, H. V., Juretic, D., Hendler, R. W. & Zasloff, M. Magainins and the disruption of membrane-linked free-energy transduction. Proc. Natl Acad. Sci. USA 86, 6597?6601 (1989).
Bierbaum, G. & Sahl, H. G. Autolytic system of Staphylococcus simulans 22: influence of cationic peptides on activity of N-acetylmuramoyl-L-alanine amidase. J. Bacteriol. 169, 5452?5458 (1987).
Zhao, H. & Kinnunen, P. K. Modulation of the activity of secretory phospholipase A2 by antimicrobial peptides. Antimicrob. Agents Chemother. 47, 965?971 (2003).
Scheller, A. et al. Structural requirements for cellular uptake of α-helical amphipathic peptides. J. Pept. Sci. 5, 185?194 (1999).
Futaki, S. et al. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J. Biol. Chem. 276, 5836?5840 (2001).
Richard, J. P. et al. Cell-penetrating peptides. A re-evaluation of the mechanism of cellular uptake. J. Biol. Chem. 278, 585?590 (2003).
Wadia, J. S., Stan, R. V. & Dowdy, S. F. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nature Med. 10, 310?315 (2004).
Casteels, P., Ampe, C., Jacobs, F. & Tempst, P. Functional and chemical characterization of hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honeybee (Apis mellifera). J. Biol. Chem. 268, 7044?7054 (1993).
Shi, J. et al. Antibacterial activity of a synthetic peptide (PR-26) derived from PR-39, a proline?arginine-rich neutrophil antimicrobial peptide. Antimicrob. Agents Chemother. 40, 115?121 (1996).
Subbalakshmi, C. & Sitaram, N. Mechanism of antimicrobial action of indolicidin. FEMS Microbiol. Lett. 160, 91?96 (1998).
Salomon, R. A. & Farias, R. N. Microcin 25, a novel antimicrobial peptide produced by Escherichia coli. J. Bacteriol. 174, 7428?7435 (1992).
Brotz, H., Bierbaum, G., Leopold, K., Reynolds, P. E. & Sahl, H. G. The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob. Agents Chemother. 42, 154?160 (1998).
Park, C. B., Kim, H. S. & Kim, S. C. Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem. Biophys. Res. Commun. 244, 253?257 (1998).
Yonezawa, A., Kuwahara, J., Fujii, N. & Sugiura, Y. Binding of tachyplesin I to DNA revealed by footprinting analysis: significant contribution of secondary structure to DNA binding and implication for biological action. Biochemistry 31, 2998?3004 (1992).
Patrzykat, A., Friedrich, C. L., Zhang, L., Mendoza, V. & Hancock, R. E. Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob. Agents Chemother. 46, 605?614 (2002).
Kavanagh, K. & Dowd, S. Histatins: antimicrobial peptides with therapeutic potential. J. Pharm. Pharmacol. 56, 285?289 (2004).
Otvos, L. Jr. et al. Interaction between heat shock proteins and antimicrobial peptides. Biochemistry 39, 14150?14159 (2000).
Kragol, G. et al. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 40, 3016?3026 (2001).
Peschel, A. et al. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J. Biol. Chem. 274, 8405?8410 (1999).
Kristian, S. A., Durr, M., Van Strijp, J. A., Neumeister, B. & Peschel, A. MprF-mediated lysinylation of phospholipids in Staphylococcus aureus leads to protection against oxygen-independent neutrophil killing. Infect. Immun. 71, 546?549 (2003).
Peschel, A. et al. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J. Exp. Med. 193, 1067?1076 (2001).
Campos, M. A. et al. Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect. Immun. 72, 7107?7114 (2004). Describes a novel mechanism of resistance in which K. pneumoniae capsule polysaccharide limits the interaction of antimicrobial peptides and proteins with the bacterial membrane targets.
Groisman, E. A., Parra-Lopez, C., Salcedo, M., Lipps, C. J. & Heffron, F. Resistance to host antimicrobial peptides is necessary for Salmonella virulence. Proc. Natl Acad. Sci. USA 89, 11939?11943 (1992).
McPhee, J. B., Lewenza, S. & Hancock, R. E. Cationic antimicrobial peptides activate a two-component regulatory system, PmrA?PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol. Microbiol. 50, 205?217 (2003). Describes how antimicrobial peptides can induce the pmrA?pmrB genes and the putative LPS modification operon.
Guo, L. et al. Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP?phoQ. Science 276, 250?253 (1997).
Guo, L. et al. Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell 95, 189?198 (1998).
Baker, S. J., Gunn, J. S. & Morona, R. The Salmonella typhi melittin resistance gene pqaB affects intracellular growth in PMA-differentiated U937 cells, polymyxin B resistance and lipopolysaccharide. Microbiology 145, 367?378 (1999).
Visser, L. G., Hiemstra, P. S., Van Den Barselaar, M. T., Ballieux, P. A. & Van Furth, R. Role of yadA in resistance to killing of Yersinia enterocolitica by antimicrobial polypeptides of human granulocytes. Infect. Immun. 64, 1653?1658 (1996).
Parra-Lopez, C., Baer, M. T. & Groisman, E., A. Molecular genetic analysis of a locus required for resistance to antimicrobial peptides in Salmonella typhimurium. EMBO J. 12, 4053?4062 (1993).
Groisman, E. A. How bacteria resist killing by host-defense peptides. Trends Microbiol. 2, 444?448 (1994).
Shafer, W. M., Qu, X., Waring, A. J. & Lehrer, R. I. Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. Proc. Natl Acad. Sci. USA 95, 1829?1833 (1998).
Resnick, N. M., Maloy, W. L., Guy, H. R. & Zasloff, M. A novel endopeptidase from Xenopus that recognizes α-helical secondary structure. Cell 66, 541?554 (1991).
Roland, K. L., Esther, C. R. & Spitznagel, J. K. Isolation and characterization of a gene, pmrD, from Salmonella typhimurium that confers resistance to polymyxin when expressed in multiple copies. J. Bacteriol. 176, 3589?3597 (1994).
Belas, R., Manos, J. & Suvanasuthi, R. Proteus mirabilis ZapA metalloprotease degrades a broad spectrum of substrates, including antimicrobial peptides. Infect. Immun. 72, 5159?5167 (2004).
Sieprawska-Lupa, M. et al. Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob. Agents Chemother. 48, 4673?4679 (2004). Describes how staphylococcal proteases can degrade the human cathelicidin LL-37, which is thought to be a novel mechanism of bacterial resistance.
Ramanathan, B., Davis, E. G., Ross, C. R. & Blecha, F. Cathelicidins: microbicidal activity, mechanisms of action, and roles in innate immunity. Microbes Infect. 4, 361?372 (2002).
Powers, J. P. & Hancock, R. E. The relationship between peptide structure and antibacterial activity. Peptides 24, 1681?1691 (2003). A good overview examining the structure?activity relationships of antimicrobial peptides, particularly β-sheet peptides, α-helical peptides, extended peptides and loop peptides.
Boman, H. G. & Hultmark, D. Cell-free immunity in insects. Annu. Rev. Microbiol. 41, 103?126 (1987).
Yount, N. Y. & Yeaman, M. R. Multidimensional signatures in antimicrobial peptides. Proc. Natl Acad. Sci. USA 101, 7363?7368 (2004).
Matsuzaki, K., Sugishita, K., Fujii, N. & Miyajima, K. Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry 34, 3423?3429 (1995).
Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318?1322 (1999).
Singh, P. K., Parsek, M. R., Greenberg, E. P. & Welsh, M. J. A component of innate immunity prevents bacterial biofilm development. Nature 417, 552?555 (2002).
Lai, R., Liu, H., Hui Lee, W. & Zhang, Y. An anionic antimicrobial peptide from toad Bombina maxima. Biochem. Biophys. Res. Commun. 295, 796?799 (2002).
Schittek, B. et al. Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nature Immunol. 2, 1133?1137 (2001).
Andersson, M., Boman, A. & Boman, H. G. Ascaris nematodes from pig and human make three antibacterial peptides: isolation of cecropin P1 and two ASABF peptides. Cell. Mol. Life Sci. 60, 599?606 (2003).
Shamova, O. et al. Purification and properties of proline-rich antimicrobial peptides from sheep and goat leukocytes. Infect. Immun. 67, 4106?4111 (1999).
Zhao, C., Ganz, T. & Lehrer, R. I. Structures of genes for two cathelin-associated antimicrobial peptides: prophenin-2 and PR-39. FEBS Lett. 376, 130?134 (1995).
Selsted, M. E. et al. Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J. Biol. Chem. 267, 4292?4295 (1992).
Basir, Y. J., Knoop, F. C., Dulka, J. & Conlon, J. M. Multiple antimicrobial peptides and peptides related to bradykinin and neuromedin N isolated from skin secretions of the pickerel frog, Rana palustris. Biochim. Biophys. Acta 1543, 95?105 (2000).
Kokryakov, V. N. et al. Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett. 327, 231?236 (1993).
Fehlbaum, P. et al. Insect immunity. Septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides. J. Biol. Chem. 269, 33159?33163 (1994).
Gazit, E., Boman, A., Boman, H. G. & Shai, Y. Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipid vesicles. Biochemistry 34, 11479?11488 (1995).
Shai, Y. Molecular recognition between membrane-spanning polypeptides. Trends Biochem. Sci. 20, 460?464 (1995).
Naito, A. et al. Conformation and dynamics of melittin bound to magnetically oriented lipid bilayers by solid-state 31P and 13C NMR spectroscopy. Biophys. J. 78, 2405?2417 (2000).
Wong, H., Bowie, J. H. & Carver, J. A. The solution structure and activity of caerin 1.1, an antimicrobial peptide from the Australian green tree frog, Litoria splendida. Eur. J. Biochem. 247, 545?557 (1997).
Kraulis, P. J. MolScript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946?950 (1991).
Merritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505?524 (1997).
Huang, H. W. Molecular mechanism of peptide induced pores in membranes. Phys. Rev. Lett. 92, 198304-1?198304-4 (2004).