Antimicrobial peptides designed by computational analysis of proteomes

Dahiana Monsalve1, Andrea Mesa1, Laura M. Mira1, Carlos Mera2,3, Sergio Orduz1, John W. Branch-Bedoya4
1Escuela de Biociencias, Departamento de Ciencias, Universidad Nacional de Colombia, Medellín, Colombia
2Departamento de Ingeniería de Sistemas, Facultad de Ingenierías, Universidad de Antioquia, Medellín, Colombia
3Departamento de Sistemas de Información, Instituto Tecnológico Metropolitano, Medellín, Colombia
4Departamento de Ciencias de la Computación y de la Decisión, Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia

Tóm tắt

Antimicrobial peptides (AMPs) are promising cationic and amphipathic molecules to fight antibiotic resistance. To search for novel AMPs, we applied a computational strategy to identify peptide sequences within the organisms' proteome, including in-house developed software and artificial intelligence tools. After analyzing 150.450 proteins from eight proteomes of bacteria, plants, a protist, and a nematode, nine peptides were selected and modified to increase their antimicrobial potential. The 18 resulting peptides were validated by bioassays with four pathogenic bacterial species, one yeast species, and two cancer cell-lines. Fourteen of the 18 tested peptides were antimicrobial, with minimum inhibitory concentrations (MICs) values under 10 µM against at least three bacterial species; seven were active against Candida albicans with MICs values under 10 µM; six had a therapeutic index above 20; two peptides were active against A549 cells, and eight were active against MCF-7 cells under 30 µM. This study's most active antimicrobial peptides damage the bacterial cell membrane, including grooves, dents, membrane wrinkling, cell destruction, and leakage of cytoplasmic material. The results confirm that the proposed approach, which uses bioinformatic tools and rational modifications, is highly efficient and allows the discovery, with high accuracy, of potent AMPs encrypted in proteins.

Từ khóa


Tài liệu tham khảo

Bacalum M, Radu M (2015) Cationic antimicrobial peptides cytotoxicity on mammalian cells: an analysis using therapeutic index integrative concept. Int J Pept Res Ther 21:47–55. https://doi.org/10.1007/s10989-014-9430-z Bhullar K, Waglechner N, Pawlowski A et al (2012) Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS ONE 7(4):e34953. https://doi.org/10.1371/JOURNAL.PONE.0034953 Boman HG (2003) Antibacterial peptides: Basic facts and emerging concepts. J Intern Med 254:197–215. https://doi.org/10.1046/j.1365-2796.2003.01228.x Branch J, Orduz S, Mera C et al. (2022) AmpClass 1.0. Una herramienta informática para la predicción de la actividad antimicrobiana de péptidos. Dirección Nacional de Derechos de Autor. Registro 13-92-95, Colombia Brand GD, Ramada MHS, Manickchand JR et al (2019) Intragenic antimicrobial peptides (IAPs) from human proteins with potent antimicrobial and anti-inflammatory activity. PLoS ONE 14(8):e0220656. https://doi.org/10.1371/JOURNAL.PONE.0220656 D’Costa VM, King CE, Kalan L et al (2011) Antibiotic resistance is ancient. Nature 477:457–461. https://doi.org/10.1038/nature10388 Deslouches B, Di YP (2017) Oncotarget 46635 www.impactjournals.com/oncotarget antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications. Oncotarget 8:46635–46651 Duque-Salazar G, Mendez-Otalvaro E, Ceballos-Arroyo AM, Orduz S (2020) Design of antimicrobial and cytolytic peptides by computational analysis of bacterial, algal, and invertebrate proteomes. Amino Acids 52:1403–1412. https://doi.org/10.1007/S00726-020-02900-W/TABLES/4 Felício MR, Silva ON, Gonçalves S et al (2017) Peptides with dual antimicrobial and anticancer activities. Front Chem 5:1–9. https://doi.org/10.3389/fchem.2017.00005 Fry DE (2018) Antimicrobial peptides. Surg Infect (larchmt) 19:804–811. https://doi.org/10.1089/sur.2018.194 Gautier R, Douguet D, Antonny B, Drin G (2008) HELIQUEST: a web server to screen sequences with specific α-helical properties. Bioinformatics 24:2101–2102. https://doi.org/10.1093/BIOINFORMATICS/BTN392 Gómez E, Orduz S (2017) PepMultiFinder 1.0: Un algoritmo para buscar péptidos bioactivos en proteomas o listas de secuencias de proteínas Hincapié O, Giraldo P, Orduz S (2018) In silico design of polycationic antimicrobial peptides active against Pseudomonas aeruginosa and Staphylococcus aureus. Antonie Van Leeuwenhoek. Int J Gen Mol Microbiol 111:1871–1882. https://doi.org/10.1007/s10482-018-1080-2 Houyvet B, Zanuttini B, Corre E et al (2018) Design of antimicrobial peptides from a cuttlefish database. Amino Acids 50:1573–1582. https://doi.org/10.1007/s00726-018-2633-4 Lamiable A, Thevenet P, Rey J et al (2016) PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex. Nucl Acids Res 44:W449–W454. https://doi.org/10.1093/NAR/GKW329 Li F, Dhordain P, Hearn MTW, Martin LL, Bennett LE (2023) Comparative yields of antimicrobial peptides released from human and cow milk proteins under infant digestion conditions predicted by in silico methodology. Food Funct 14(11):5442–5452. https://doi.org/10.1039/d3fo00748k Liu L, Wang C, Zhang M, Zhang Z, Wu Y, Zhang Y (2022) An efficient evaluation system accelerates α-helical antimicrobial peptide discovery and its application to global human genome mining. Front Microbiol 13:870361. https://doi.org/10.3389/fmicb.2022.870361 Marcellini L, Giammatteo M, Aimola P, Mangoni ML (2010) Fluorescence and electron microscopy methods for exploring antimicrobial peptides mode(s) of action. Methods Mol Biol 618:249–266. https://doi.org/10.1007/978-1-60761-594-1_16/COVER Mooney C, Haslam NJ, Holton TA et al (2013) PeptideLocator: prediction of bioactive peptides in protein sequences. Bioinformatics 29:1120–1126. https://doi.org/10.1093/bioinformatics/btt103 Mulani MS, Kamble EE, Kumkar SN et al (2019) Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front Microbiol 10:539. https://doi.org/10.3389/fmicb.2019.00539 Neundorf I (2019) Antimicrobial and cell-penetrating peptides: how to understand two distinct functions despite similar physicochemical properties. Adv Exp Med Biol 1117:93–109. https://doi.org/10.1007/978-981-13-3588-4_7 O’Driscoll NH, Labovitiadi O, Cushnie TPT et al (2013) Production and evaluation of an antimicrobial peptide-containing wafer formulation for topical application. Curr Microbiol 66:271–278. https://doi.org/10.1007/S00284-012-0268-3/METRICS Perron GG, Whyte L, Turnbaugh PJ et al (2015) Functional characterization of bacteria isolated from ancient Arctic soil exposes diverse resistance mechanisms to modern antibiotics. PLoS ONE 10(3):e0069533. https://doi.org/10.1371/JOURNAL.PONE.0069533 Pinilla G, Coronado YT, Chaves G et al (2022) In vitro antifungal activity of LL-37 analogue peptides against Candida spp. J Fungi 8:1173. https://doi.org/10.3390/JOF8111173 Santos MA, Silva FL, Lira BOV, Cardozo Fh JL, Vasconcelos AG, Araujo AR, Murad AM, Garay AV, Freitas SM, Leite JRSA, Bloch C Jr, Ramada MHS, de Oliveira AL, Brand GD (2023) Probing human proteins for short encrypted antimicrobial peptides reveals Hs10, a peptide with selective activity for gram-negative bacteria. Biochim Biophys Acta Gen Subj 1867:130265. https://doi.org/10.1016/j.bbagen.2022.130265 Strandberg E, Tiltak D, Ieronimo M et al (2007) Influence of C-terminal amidation on the antimicrobial and hemolytic activities of cationic α-helical peptides. Pure Appl Chem 79:717–728. https://doi.org/10.1351/pac200779040717 Tacconelli E, Magrini N (2017) Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. World Health Organ Essent Med Heal Prod 1–7 Tamayo S, Castañeda C, Orduz S (2018) Type-Peptide 1.0. Dirección Nacional de Derechos de Autor. Registro 13-70-274, Colombia Torrent M, Andreu D, Nogués VM, Boix E (2011) Connecting peptide physicochemical and antimicrobial properties by a rational prediction model. PLoS ONE 6(2):e16968. https://doi.org/10.1371/JOURNAL.PONE.0016968 Torrent M, Di Tommaso P, Pulido D et al (2012) AMPA: an automated web server for prediction of protein antimicrobial regions. Bioinformatics 28:130–131. https://doi.org/10.1093/bioinformatics/btr604 Torres MDT, Melo MCR, Flowers L, Crescenzi O, Notomista E, de la Fuente-Nunez C (2022) Mining for encrypted peptide antibiotics in the human proteome. Nat Biomed Eng 6(1):67–75. https://doi.org/10.1038/s41551-021-00801-1 Veltri D, Kamath U, Shehu A (2018) Deep learning improves antimicrobial peptide recognition. Bioinformatics 34:2740–2747. https://doi.org/10.1093/bioinformatics/bty179 Waghu FH, Barai RS, Gurung P, Idicula-Thomas S (2016) CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res 44:D1094–D1097. https://doi.org/10.1093/nar/gkv1051 Wang G (2017) Antimicrobial peptides: discovery, design, and novel therapeutic strategies. 1–230. https://doi.org/10.1079/9781845936570.0000 Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucl Acids Res 44:D1087–D1093. https://doi.org/10.1093/nar/gkv1278 Wiegand I, Hilpert K (2008) Hancock REW (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 32(3):163–175. https://doi.org/10.1038/nprot.2007.521 World Health Organization (2021) Antimicrobial resistance. In: https://www.who.int/en/news-room/fact-sheets/detail/antimicrobial-resistance Yang J, Zhang Y (2015) I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 43:W174–W181. https://doi.org/10.1093/NAR/GKV342 Zhang B, Shi W, Li J et al (2017) Synthesis and biological evaluation of novel peptides based on antimicrobial peptides as potential agents with antitumor and multidrug resistance-reversing activities. Chem Biol Drug Des 90:972–980. https://doi.org/10.1111/CBDD.13023