Antimicrobial effectiveness of silver nanoparticles co-stabilized by the bioactive copolymer pluronic F68
Tóm tắt
Silver nanoparticles (AgNps) have attracted much interest in biomedical engineering, since they have excellent antimicrobial properties. Therefore, AgNps have often been considered for incorporation into medical products for skin pathologies to reduce the risk of contamination. This study aims at evaluating the antimicrobial effectiveness of AgNps stabilized by pluronic™ F68 associated with other polymers such as polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP). AgNps antimicrobial activity was evaluated using the minimum inhibitory concentration (MIC) method. The action spectrum was evaluated for different polymers associated with pluronic™ F68 against the gram negative bacteria P. aeuroginosa and E. coli and the gram positive bacteria S. Aureus. AgNps stabilized with PVP or PVA and co-stabilized with pluronic™ F68 are effective against E. coli and P. aeruginosa microorganisms, with MIC values as low as 0.78% of the concentration of the original AgNps dispersion. The antimicrobial action against S. aureus is poor, with MIC values not lower than 25%. AgNps stabilized by different polymeric systems have shown improved antimicrobial activity against gram-negative microorganisms in comparison to unstabilized AgNps. Co-stabilization with the bioactive copolymer pluronic™ F68 has further enhanced the antimicrobial effectiveness against both microorganisms. A poor effectiveness has been found against the gram-positive S. aureus microorganism. Future assays are being delineated targeting possible therapeutic applications.
Tài liệu tham khảo
Ragaseema VM, Unnikrishnan S, Kalliyana Krishnan V, Krishnan Lissy K: The antithrombotic and antimicrobial properties of PEG-protected silver nanoparticle coated surfaces. Biomaterials. 2012, 33: 3083-3092. 10.1016/j.biomaterials.2012.01.005.
Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM, Bayston R, Brown PD, Winship PD, Reid HJ: Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection?. J Antimicrob Chemother. 2004, 54: 1019-1024. 10.1093/jac/dkh478.
Irwin P, Martin J, Nguyen LH, He Y, Gehring A, Chen CY: Antimicrobial activity of spherical silver nanoparticles prepared using a biocompatible macromolecular capping agent: evidence for induction of a greatly prolonged bacterial lag phase. J Nanobiotechnology. 2010, 8: 34-10.1186/1477-3155-8-34.
Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM: Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem. 2007, 12: 527-534. 10.1007/s00775-007-0208-z.
Pal S, Tak YK, Song JM: Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007, 73: 1712-1720. 10.1128/AEM.02218-06.
Baker C, Pradhan A, Pakstis L, Pochan DJ, Shah SI: Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol. 2005, 5: 244-249. 10.1166/jnn.2005.034.
Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ: The bactericidal effect of silver nanoparticles. Nanotechnology. 2005, 16: 2346-2353. 10.1088/0957-4484/16/10/059.
Sondi I, Salopek-Sondi B: Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004, 275: 177-182. 10.1016/j.jcis.2004.02.012.
Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevecna T, Zboril R: Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B. 2006, 110: 16248-16253. 10.1021/jp063826h.
Cho KH, Park JE, Osaka T, Park SG: The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta. 2005, 51: 956-960. 10.1016/j.electacta.2005.04.071.
Kora AJ, Arunachalam J: Assessment of antibacterial activity of silver nanoparticles on Pseudomonas aeruginosa and its mechanism of action. World J Microbiol Biotechnol. 2011, 27: 1209-1216. 10.1007/s11274-010-0569-2.
Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ: Interaction of silver nanoparticles with HIV-1. J Nanobiotechnology. 2005, 3: 6-16. 10.1186/1477-3155-3-6.
Batrakova EV, Kabanov AV: Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release. 2008, 130 (2): 98-106. 10.1016/j.jconrel.2008.04.013.
Croy SR, Kwon GS: The effects of pluronic block copolymers on the aggregation state of nystatin. J Control Release. 2004, 95: 161-171. 10.1016/j.jconrel.2003.11.003.
Ma W-D, Hui X, Wang C, Nie S-F, Pan W-S: Pluronic F127-g-poly (acrylic acid) copolymers as in situ gelling vehicle for ophthalmic drug delivery system. Int J Pharm. 2008, 350: 247-256. 10.1016/j.ijpharm.2007.09.005.
Briones E, Colino CI, Lanao JM: Delivery systems to increase the selectivity of antibiotics in phagocytic cells. J Control Release. 2008, 125: 210-227. 10.1016/j.jconrel.2007.10.027.
Santos CA, Ribeiro GB, Knirsch MC, Pessoa-Jr A, Penna TCV: Influence of pluronic F68 on Ceftazidime Biological Activity in Parenteral Solutions. J Pharm Sci. 2010, 1: 1-6.
Chopra I: The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern?. J Antimicrob Chemother. 2007, 59: 587-590. 10.1093/jac/dkm006.
Martinez-Abad A, Lagaron JM, Ocio MJ: Development and characterization of silver-based antimicrobial ethylene−vinyl alcohol copolymer (EVOH) films for food-packaging applications. J Agric Food Chem. 2012, 60 (21): 5350-5359. 10.1021/jf300334z.
Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, de Heer C, ten Voorde SECG, Wijnhoven SWP, Marvin HPJ, Sips AJAM: Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol. 2009, 53: 52-62. 10.1016/j.yrtph.2008.10.008.
Beiersdorf B: Nivea spray silver protect. www.nivea.com/products/show/25795
Silver Care Plus self sanitizing toothbrush. www.dentist.net/silver-care-plus.asp
He L, Gao S-y, Wu H, Liao X-p, He Q, Shi B: Antibacterial activity of silver nanoparticles stabilized on tannin-grafted collagen fiber. Mater Sci Eng C. 2012, 32: 1050-1056. 10.1016/j.msec.2011.07.024.
Abdullin TI, Bondar OV, Shtyrlin YG, Kahraman M, Culha M: Pluronic block copolymer-mediated interactions of organic compounds with noble metal nanoparticles for SERS analysis. Langmuir. 2010, 26: 5153-5159. 10.1021/la9036309.
Santos CA, Oliveira RA, Seckler MM: Optimization of green synthesis method for silver nanoparticles. 2011, ISIC (18th International Symposium on Industrial crystallization
Mazzola PG, Jozala AF, Novaes LCL, Moriel P, Vessoni Penna TC: Minimal inhibitory concentration (MIC) determination of disinfectant and/or sterilizing agents. Braz J Pharm Sci. 2009, 45: 2