Antimicrobial activity of the metals and metal oxide nanoparticles

Materials Science and Engineering: C - Tập 44 - Trang 278-284 - 2014
Solmaz Maleki Dizaj1, Farzaneh Lotfipour1, Mohammad Barzegar-Jalali1, Mohammad Hossein Zarrintan1, Khosro Adibkia2
1Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
2Biotechnology Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. Electronic address: [email protected].

Tóm tắt

Từ khóa


Tài liệu tham khảo

Allahverdiyev, 2011, Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites, Future Microbiol, 6, 933, 10.2217/fmb.11.78

Malarkodi, 2014, Biosynthesis and Antimicrobial Activity of Semiconductor Nanoparticles against Oral Pathogens, Bioinorg. Chem. Appl., 2014, 1, 10.1155/2014/347167

Adibkia, 2007, Inhibition of endotoxin-induced uveitis by methylprednisolone acetate nanosuspension in rabbits, J. Ocul. Pharmacol. Ther., 23, 421, 10.1089/jop.2007.0039

Adibkia, 2011, Naproxen–eudragit RS100 nanoparticles: Preparation and physicochemical characterization, Colloids Surf. B, 83, 155, 10.1016/j.colsurfb.2010.11.014

Sabzevari, 2013, Polymeric triamcinolone acetonide nanoparticles as a new alternative in the treatment of uveitis: In vitro and in vivo studies, Eur. J. Pharm. Biopharm., 84, 63, 10.1016/j.ejpb.2012.12.010

Seil, 2012, Antimicrobial applications of nanotechnology: methods and literature, Int. J. Nanomedicine, 7, 2767

Adibkia, 2012, Evaluation and optimization of factors affecting novel diclofenac sodium-eudragit RS100 nanoparticles, Afr. J. Pharm. Pharmacol., 6, 941

Buzea, 2007, Nanomaterials and nanoparticles: sources and toxicity, Biointerphases, 2, MR17, 10.1116/1.2815690

Adibkia, 2010, A review on the methods of preparation of pharmaceutical nanoparticles, J. Pharm. Sci., 15, 303

Ravishankar Rai, 2011, Nanoparticles and their potential application as antimicrobials, 197

Besinis, 2014, The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays, Nanotoxicology, 8, 1, 10.3109/17435390.2012.742935

Mohammadi, 2010, Development of azithromycin–PLGA nanoparticles: Physicochemical characterization and antibacterial effect against Salmonella typhi, Colloids Surf. B, 80, 34, 10.1016/j.colsurfb.2010.05.027

Fellahi, 2013, The antimicrobial effect of silicon nanowires decorated with silver and copper nanoparticles, Nanotechnology, 24, 495101, 10.1088/0957-4484/24/49/495101

Mohammadi, 2011, Physicochemical and anti-bacterial performance characterization of clarithromycin nanoparticles as colloidal drug delivery system, Colloids Surf. B, 88, 39, 10.1016/j.colsurfb.2011.05.050

Pal, 2007, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli, Appl. Environ. Microbiol., 73, 1712, 10.1128/AEM.02218-06

Bera, 2014, Antimicrobial Activity of Fluorescent Ag Nanoparticles, Lett. Appl. Microbiol., 58, 520, 10.1111/lam.12222

Tsuji, 2006, Research strategies for safety evaluation of nanomaterials, part IV: risk assessment of nanoparticles, Toxicol. Sci., 89, 42, 10.1093/toxsci/kfi339

De Jong, 2008, Drug delivery and nanoparticles: applications and hazards, Int. J. Nanomedicine, 3, 133, 10.2147/IJN.S596

Zimper, 2010, The influence of milling on the dissolution performance of simvastatin, Pharmaceutics, 2, 419, 10.3390/pharmaceutics2040419

Elsaesser, 2012, Toxicology of nanoparticles, Adv. Drug Deliv. Rev., 64, 129, 10.1016/j.addr.2011.09.001

Zinjarde, 2012, Bio-inspired nanomaterials and their applications as antimicrobial agents, Chronicles Young Sci., 3, 1

Egger, 2009, Antimicrobial properties of a novel silver–silica nanocomposite material, Appl. Environ. Microbiol., 75, 2973, 10.1128/AEM.01658-08

Jo, 2009, Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi, Plant Dis., 93, 1037, 10.1094/PDIS-93-10-1037

Lok, 2006, Proteomic analysis of the mode of antibacterial action of silver nanoparticles, J. Proteome Res., 5, 916, 10.1021/pr0504079

Yun, 2013, Antibacterial Activity of CNT–Ag and GO–Ag Nanocomposites Against Gram-negative and Gram-positive Bacteria, Bull. Korean Chem. Soc., 34, 3261, 10.5012/bkcs.2013.34.11.3261

Iavicoli, 2013, The Effects of Nanomaterials as Endocrine Disruptors, Int. J. Mol. Sci., 14, 16732, 10.3390/ijms140816732

Mie, 2014, Synthesis of silver nanoparticles with antibacterial activity using the lichen Parmotrema praesorediosum, Int. J. Nanomedicine, 9, 121

Hernández-Sierra, 2008, The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold, Nanomedicine: NBM, 4, 237, 10.1016/j.nano.2008.04.005

Zarei, 2014, Antibacterial Effect of Silver Nanoparticles Against Four Foodborne Pathogens, Jundishapur J. Microbiol., 7, e8720, 10.5812/jjm.8720

Bahrami, 2014, Hydroxyl capped silver–gold alloy nanoparticles: characterization and their combination effect with different antibiotics against Staphylococcus aureus, Nanomedicine J, 1, 155

Sathyanarayanan, 2013, The Effect of Gold and Iron-Oxide Nanoparticles on Biofilm-Forming Pathogens, ISRN Microbiol., 2013, 1, 10.1155/2013/272086

Sondi, 2004, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, J. Colloid Interface Sci., 275, 177, 10.1016/j.jcis.2004.02.012

Marambio-Jones, 2010, A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment, J. Nanoparticle Res., 12, 1531, 10.1007/s11051-010-9900-y

Saraf, 2013, Cost effective and Monodispersed Zinc Oxide Nanoparticles Synthesis and their Characterization, Int. J. Adv. Appl. Sci., 2, 85

Liu, 2014, Effects of ZnO nanoparticles and microwave heating on the sterilization and product quality of vacuum packaged Caixin, J. Sci. Food Agric., 94, 2547, 10.1002/jsfa.6594

Azam, 2011, Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study, Int. J. Nanomedicine, 7, 6003

Xie, 2011, Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni, Appl. Environ. Microbiol., 77, 2325, 10.1128/AEM.02149-10

Padmavathy, 2008, Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study, Sci. Technol. Adv. Mater., 9, 1, 10.1088/1468-6996/9/3/035004

Zhang, 2008, ZnO nanofluids—A potential antibacterial agent, Prog. Nat. Sci., 18, 939, 10.1016/j.pnsc.2008.01.026

Rao, 2013, Development of ZnO Nanoparticles for Clinical Applications, J. Chem. Biol. Phys. Sci., 4, 469

Hajipour, 2012, Antibacterial properties of nanoparticles, Trends Biotechnol., 30, 499, 10.1016/j.tibtech.2012.06.004

Li, 2013, Non-Cytotoxic Nanomaterials Enhance Antimicrobial Activities of Cefmetazole against Multidrug-Resistant Neisseria gonorrhoeae, PLoS ONE, 8, e64794, 10.1371/journal.pone.0064794

Atkinson, 2009, Metal acquisition and availability in the mitochondria, Chem. Rev., 109, 4708, 10.1021/cr900006y

Cioffi, 2012, Nano-antimicrobials

Hosseinkhani, 2011, Determining the antibacterial effect of ZnO nanoparticle against the pathogenic bacterium, Shigella dysenteriae (type 1), Int. J. Nano Dimens., 1, 279

Emami-Karvani, 2011, Antibacterial activity of ZnO nanoparticle on Gram positive and gram-negative bacteria, Afr. J. Microbiol. Res., 5, 1368

Zaleska, 2008, Doped-TiO2: a review, Recent Pat. Eng., 2, 157, 10.2174/187221208786306289

Sun, 2014, Preparation and antibacterial properties of titanium-doped ZnO from different zinc salts, Nanoscale Res. Lett., 9, 98, 10.1186/1556-276X-9-98

Gupta, 2013, Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. coli, Beilstein J. Nanotechnol., 4, 345, 10.3762/bjnano.4.40

Rasmussen, 2010, Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications, Expert Opin. Drug Deliv., 7, 1063, 10.1517/17425247.2010.502560

Haghighi, 2013, Antifungal Activity of TiO2 nanoparticles and EDTA on Candida albicans Biofilms, Infect. Epidemiol. Med., 1, 33

Roy, 2010, Effect of Nano-Titanium Dioxide with Different Antibiotics against Methicillin-Resistant Staphylococcus aureus, J. Biomater. Nanobiotechnol., 1, 37, 10.4236/jbnb.2010.11005

Carré, 2014, TiO2 photocatalysis damages lipids and proteins in Escherichia coli, Appl. Environ. Microbiol., 80, 2573, 10.1128/AEM.03995-13

Lima, 2013, Gold nanoparticles as efficient antimicrobial agents for Escherichia coli and Salmonella typhi, Chem. Cent. J., 7, 1, 10.1186/1752-153X-7-11

Tiwari, 2011, Functionalized gold nanoparticles and their biomedical applications, Nanomaterials, 1, 31, 10.3390/nano1010031

Zhou, 2012, Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guérin, J. Nanobiotechnol., 10, 19, 10.1186/1477-3155-10-19

Lolina, 2013, Antimicrobial and Anticancer Activity of Gold Nanoparticles Synthesized from Grapes Fruit Extract, Chem. Sci. Trans., 2, S105

Cui, 2012, The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli, Biomaterials, 33, 2327, 10.1016/j.biomaterials.2011.11.057

Goodman, 2004, Toxicity of gold nanoparticles functionalized with cationic and anionic side chains, Bioconjug. Chem., 15, 897, 10.1021/bc049951i

Kundu, 2008, Polyelectrolyte-mediated non-micellar synthesis of monodispersed ‘aggregates’ of gold nanoparticles using a microwave approach, Colloids Surf. A Physicochem. Eng. Asp., 330, 143, 10.1016/j.colsurfa.2008.07.043

Dhapte, 2014, Versatile SiO2 Nanoparticles Polymer Composites with Pragmatic Properties, ISRN Inorg. Chem., 2014, 1, 10.1155/2014/170919

Cousins, 2007, Effects of a nanoparticulate silica substrate on cell attachment of Candida albicans, J. Appl. Microbiol., 102, 757, 10.1111/j.1365-2672.2006.03124.x

Mukha, 2010, Antibacterial Action and Physicochemical Properties of Stabilized Silver and Gold Nanostructures on the Surface of Disperse Silica, J. Water Resour. Prot., 2, 131, 10.4236/jwarp.2010.22015

Lv, 2010, Long‐Term Antimicrobial Effect of Silicon Nanowires Decorated with Silver Nanoparticles, Adv. Mater., 22, 5463, 10.1002/adma.201001934

Yamamoto, 2010, Antibacterial characteristics of CaCO3–MgO composites, Mater. Sci. Eng. B, 173, 208, 10.1016/j.mseb.2009.12.007

Jin, 2011, Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens, J. Nanoparticle Res., 13, 6877, 10.1007/s11051-011-0595-5

Hewitt, 2001, An evaluation of the anti-bacterial action of ceramic powder slurries using multi-parameter flow cytometry, Biotechnol. Lett., 23, 667, 10.1023/A:1010379714673

Leung, 2014, Mechanisms of Antibacterial Activity of MgO: Non‐ROS Mediated Toxicity of MgO Nanoparticles Towards Escherichia coli, Small, 10, 1171, 10.1002/smll.201302434

Vidic, 2013, Selective antibacterial effects of mixed ZnMgO nanoparticles, J. Nanoparticle Res., 15, 1, 10.1007/s11051-013-1595-4

Jeong, 2007, Characterization of antibacterial nanoparticles from the scallop, Ptinopecten yessoensis, Biosci. Biotechnol. Biochem., 71, 2242, 10.1271/bbb.70228

Sawai, 2000, Antibacterial characteristics of magnesium oxide powder, World J. Microbiol. Biotechnol., 16, 187, 10.1023/A:1008916209784

Sawai, 2002, Evaluation of Antibacterial Activity of Inorganic Materials and Application of Natural Inorganic Materials to Controlling Microorganisms, Food Ingredients J. Jpn., 203, 47

Wu, 2002, Synthesis of copper oxide nanoparticles using carbon nanotubes as templates, Chem. Phys. Lett., 364, 152, 10.1016/S0009-2614(02)01301-5

Usman, 2013, Synthesis, characterization, and antimicrobial properties of copper nanoparticles, Int. J. Nanomedicine, 8, 4467

Ahamed, 2014, Synthesis, characterization and antimicrobial activity of copper oxide nanoparticles, J. Nanomater., 2014, 1, 10.1155/2014/637858

Mahapatra, 2008, Ultrafine dispersed CuO nanoparticles and their antibacterial activity, J. Exp. Nanosci., 3, 185, 10.1080/17458080802395460

Azam, 2012, Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and-negative bacterial strains, Int. J. Nanomedicine, 7, 3527, 10.2147/IJN.S29020