Antimicrobial activity of bacteria isolated from Red Sea marine invertebrates
Tài liệu tham khảo
Indraningrat, 2016, Bioprospecting sponge-associated microbes for antimicrobial compounds, Mar. Drugs, 14, 87, 10.3390/md14050087
2014
Aminov, 2010, A brief history of the antibiotic era: lessons learned and challenges for the future, Front. Microbiol., 1, 10.3389/fmicb.2010.00134
Moellering, 2011, Discovering new antimicrobial agents, Int. J. Antimicrob. Agents, 37, 2, 10.1016/j.ijantimicag.2010.08.018
Bibi, 2016, Bacteria from marine sponges: a source of new drugs, Curr. Drug Metab., 18, 11, 10.2174/1389200217666161013090610
Biswas, 2016, Marine bacteria: a potential tool for antibacterial activity, J. Appl. Environ. Microbiol., 4, 25
Jimeno, 2004, New marine derived anticancer therapeutics—a journey from the sea to clinical trials, Mar. Drugs, 2, 14, 10.3390/md201014
Blunt, 2007, Marine natural products, Nat. Prod. Rep., 24, 31, 10.1039/b603047p
Hill, 2006, Marine natural products, Annu. Rep. Sect. “B” (Org. Chem.), 102, 123, 10.1039/b515100g
Zhang, 2009, Investigation of bacteria with polyketide synthase genes and antimicrobial activity isolated from South China Sea sponges, J. Appl. Microbiol., 107, 567, 10.1111/j.1365-2672.2009.04241.x
Taylor, 2007, Sponge-associated microorganisms: evolution, ecology, and biotechnological potential, Microbiol. Mol. Biol. Rev., 71, 295, 10.1128/MMBR.00040-06
Anjum, 2016, Marine sponges as a drug treasure, Biomol. Ther., 24, 347, 10.4062/biomolther.2016.067
Mayer, 2013, Mar. Drugs, 11, 2510, 10.3390/md11072510
Qian, 2011, Vertical stratification of microbial communities in the Red Sea revealed by 16S rDNA pyrosequencing, ISME J., 5, 507, 10.1038/ismej.2010.112
Ngugi, 2012, Biogeography of pelagic bacterioplankton across an antagonistic temperature-salinity gradient in the Red Sea: biogeography of pelagic bacteria in the Red Sea, Mol. Ecol., 21, 388, 10.1111/j.1365-294X.2011.05378.x
Ngugi, 2013, Correction: combined analyses of the ITS loci and the corresponding 16S rRNA genes reveal high micro- and macrodiversity of SAR11 populations in the Red Sea, PLoS One, 8, 10.1371/annotation/99cbcee6-fcc9-441b-a350-7073b3e0361e
Temraz, 2006, A pyridinium derivative from Red Sea soft corals inhibited voltage-activated potassium conductances and increased excitability of rat cultured sensory neurones, BMC Pharmacol., 6, 10, 10.1186/1471-2210-6-10
Nadeem, 2016, Red Sea microbial diversity for antimicrobial and anticancer agents, J. Mol. Biomark. Diagn., 07
Graça, 2015, The antimicrobial activity of heterotrophic bacteria isolated from the marine sponge Erylus deficiens (Astrophorida, Geodiidae), Front. Microbiol., 6, 10.3389/fmicb.2015.00389
Santos, 2015, Investigation of biotechnological potential of sponge-associated bacteria collected in Brazilian coast, Lett. Appl. Microbiol., 60, 140, 10.1111/lam.12347
Williams, 2013, Engineering polyketide synthases and nonribosomal peptide synthetases, Curr. Opin. Struct. Biol., 23, 603, 10.1016/j.sbi.2013.06.012
Hutchinson, 2003, Polyketide and non-ribosomal peptide synthases: falling together by coming apart, Proc. Natl. Acad. Sci. U. S. A., 100, 3010, 10.1073/pnas.0730689100
Webster, 2001, Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile, Appl. Environ. Microbiol., 67, 434, 10.1128/AEM.67.1.434-444.2001
Mincer, 2002, Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments, Appl. Environ. Microbiol., 68, 5005, 10.1128/AEM.68.10.5005-5011.2002
Webster, 2001, Detection and phylogenetic analysis of novel Crenarchaeote and Euryarchaeote 16S ribosomal RNA gene sequences from a Great Barrier Reef Sponge, Mar. Biotechnol., 3, 600, 10.1007/s10126-001-0065-7
Sambrook, 1989, vol. 2
Flemer, 2012, Diversity and antimicrobial activities of microbes from two Irish marine sponges, Suberites carnosus and Leucosolenia sp.: antimicrobial activities of sponge microbes, J. Appl. Microbiol., 112, 289, 10.1111/j.1365-2672.2011.05211.x
Maloy, 1990
Pospiech, 1995, A versatile quick-prep of genomic DNA from gram-positive bacteria, Trends Genet., 11, 217, 10.1016/S0168-9525(00)89052-6
Kim, 2005, Marine actinomycetes related to the “Salinospora” group from the Great Barrier Reef sponge Pseudoceratina clavata, Environ. Microbiol., 7, 509, 10.1111/j.1462-2920.2005.00716.x
Kumar, 2016, MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 33, 1870, 10.1093/molbev/msw054
Ehrenreich, 2005, Distribution and diversity of natural product genes in marine and freshwater cyanobacterial cultures and genomes, Appl. Environ. Microbiol., 71, 7401, 10.1128/AEM.71.11.7401-7413.2005
Neilan, 1999, Nonribosomal peptide synthesis and toxigenicity of cyanobacteria, J. Bacteriol., 181, 4089, 10.1128/JB.181.13.4089-4097.1999
Ayuso-Sacido, 2005, New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups, Microb. Ecol., 49, 10, 10.1007/s00248-004-0249-6
Metsä-Ketelä, 1999, An efficient approach for screening minimal PKS genes from Streptomyces, FEMS Microbiol. Lett., 180, 1, 10.1016/S0378-1097(99)00453-X
Whelan, 2001, A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach, Mol. Biol. Evol., 18, 691, 10.1093/oxfordjournals.molbev.a003851
Kimura, 1980, A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences, J. Mol. Evol., 16, 111, 10.1007/BF01731581
Palomo, 2013, Sponge-derived Kocuria and Micrococcus spp. as sources of the new thiazolyl peptide antibiotic kocurin, Mar. Drugs, 11, 1071, 10.3390/md11041071
Abdelmohsen, 2010, Isolation, phylogenetic analysis and anti-infective activity screening of marine sponge-associated actinomycetes, Mar. Drugs, 8, 399, 10.3390/md8030399
ElAhwany, 2015, Phylogenetic diversity and antimicrobial activity of marine bacteria associated with the soft coral Sarcophyton glaucum, J. Basic Microbiol., 55, 2, 10.1002/jobm.201300195
Machado, 2015, Genome mining reveals unlocked bioactive potential of marine gram-negative bacteria, BMC Genom., 16, 158, 10.1186/s12864-015-1365-z
Schneemann, 2010, Comprehensive investigation of marine Actinobacteria associated with the sponge Halichondria panicea, Appl. Environ. Microbiol., 76, 3702, 10.1128/AEM.00780-10
Zerikly, 2009, Strategies for the discovery of new natural products by genome mining, ChemBioChem, 10, 625, 10.1002/cbic.200800389
El-Moneam, 2017, Isolation, identification and molecular screening of Pseudomonas sp. metabolic pathways NRPs and PKS associated with the Red sea Sponge, Hyrtios aff. Erectus, Egypt, J. Pure Appl. Microbiol., 11, 1299, 10.22207/JPAM.11.3.10
Sagar, 2013, Cytotoxic and apoptotic evaluations of marine bacteria isolated from brine-seawater interface of the Red Sea, BMC Complement. Altern. Med., 13, 10.1186/1472-6882-13-29
Abdelfattah, 2016, Isolation and characterization of marine-derived actinomycetes with cytotoxic activity from the Red Sea coast, Asian Pac. J. Trop. Biomed., 6, 651, 10.1016/j.apjtb.2016.06.004
Ayuso, 2005, A novel actinomycete strain de-replication approach based on the diversity of polyketide synthase and nonribosomal peptide synthetase biosynthetic pathways, Appl. Microbiol. Biotechnol., 67, 795, 10.1007/s00253-004-1828-7
Dashti, 2014, Production of induced secondary metabolites by a co-culture of sponge-associated actinomycetes, Actinokineospora sp. EG49 and Nocardiopsis sp. RV163, Mar. Drugs, 12, 3046, 10.3390/md12053046
Al-Zereini, 2010, Aqabamycins A–G: novel nitro maleimides from a marine Vibrio species. I. Taxonomy, fermentation, isolation and biological activities, J. Antibiot., 63, 297, 10.1038/ja.2010.34
Bennur, 2015, Nocardiopsis species: incidence, ecological roles and adaptations, Microbiol. Res., 174, 33, 10.1016/j.micres.2015.03.010
Mansson, 2011, Production of bioactive secondary metabolites by marine Vibrionaceae, Mar. Drugs, 9, 1440, 10.3390/md9091440
Wu, 2005, A new tetrodotoxin-producing actinomycete, Nocardiopsis dassonvillei, isolated from the ovaries of puffer fish Fugu rubripes, Toxicon, 45, 851, 10.1016/j.toxicon.2005.02.005