Antimicrobial Effect of Diphenyl Ditelluride (PhTe)2 in a Model of Infection by Escherichia coli in Drosophila melanogaster

Franciane Cabral Pinheiro1, Vandreza Cardoso Bortolotto1, Stífani Machado Araujo2, Mustafa Munir Mustafa Dahleh1, José Sebastião Santos Neto3, Gilson Zeni4, Arnaldo Zaha5, Marina Prigol1
1Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas –Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui, Brazil
2Laboratório de BioSaúde Humana e Animal, Universidade Federal da Fronteira Sul, Realeza, Brazil
3Instituto de Química, Universidade Federal de Goiás, Goiânia, Brazil
4Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
5Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

Tóm tắt

Diphenyl ditelluride (PhTe)2, an organotelluric compound with pharmacological and toxicological attributes, has shown promise in microorganism studies. Drosophila melanogaster, an alternative animal model, is gaining popularity for novel antimicrobial research due to its cost-effectiveness, versatility, and similarity to vertebrate models. Given the rising antibiotic resistance, particularly in Escherichia coli (E. coli), the exploration of novel antimicrobials is of utmost importance. In (PhTe)2 safety validation, our findings indicate an 50% lethal concentration (LC50) of 41.74 µM for (PhTe)2 following a 48-h exposure period in Drosophila melanogaster. To assess potential motor and neurological deficits, we conducted behavioral analyses employing negative geotaxis and open field tests. Our outcomes reveal alterations in exploratory behavior at concentrations exceeding 50 µM (PhTe)2 in the flies. Consequently, we have established the optimal treatment concentration for Drosophila melanogaster as 10 µM (PhTe)2. Upon safety validation, we gauged the antimicrobial potential of (PhTe)2 through an oral infection model involving axenic flies. After exposing these flies to E. coli for 18–20 h, we treated them with 10 µM of (PhTe)2 for various time spans (0, 3, 6, 12, 24, and 48 h), followed by plating and colony counting. The logarithmic bacterial load curve demonstrated the antimicrobial impact of the compound, highlighting a significant reduction in bacterial load after 3 h of exposure to 10 µM (PhTe)2, with an enhancement of antimicrobial potential lasting up to 48 h. Given these results, we state that 10 µM (PhTe)2 was safe and presented antimicrobial potential, reducing the bacterial load in Drosophila melanogaster.

Tài liệu tham khảo

Alkeskas A, Ogrodzki P, Saad M, Masood N, Rhoma NR, Moore K et al (2015) The molecular scherichiation of Escherichia coli K1 isolated from neonatal nasogastric feeding tubes. BMC Infect Dis 15:1–14. https://doi.org/10.1186/s12879-015-1210-7 Araujo SM, de Paula MT, Poetini MR, Meichtry L, Bortolotto VC, Zarzecki MS et al (2015) Effectiveness of γ-oryzanol in reducing neuromotor deficits, dopamine depletion and oxidative stress in a Drosophila melanogaster model of Parkinson’s disease induced by rotenone. Neurotoxicology 51:96–105. https://doi.org/10.1016/j.neuro.2015.09.003 Bonten M, Johnson JR, van den Biggelaar AH, Georgalis L, Geurtsen J, de Palacios PI et al (2021) Epidemiology of Escherichia coli bacteremia: a systematic literature review. Clin Infect Dis 72:1211–1219. https://doi.org/10.1093/cid/ciaa210 Chamilos G, Samonis G, Kontoyiannis D (2011) Drosophila melanogaster as a model host for the study of microbial pathogenicity and the discovery of novel antimicrobial compounds. Curr Pharm Des 17:1246–1253. https://doi.org/10.2174/138161211795703744 Degrandi TH, De Oliveira IM, D’Almeida GS, Garcia CRL, Villela IV, Guecheva TN, Rosa RM, Henriques JAP (2010) Evaluation of the cytotoxicity, genotoxicity and mutagenicity of diphenyl ditelluride in several biological models. Mutagenesis 25:257–269. https://doi.org/10.1093/mutage/geq002 Hirth F (2010) Drosophila melanogaster in the study of human neurodegeneration. CNSNDDT 9:504–523. https://doi.org/10.2174/187152710791556104 Iskandar K, Murugaiyan J, HammoudiHalat D, Hage SE, Chibabhai V, Adukkadukkam S et al (2022) Antibiotic discovery and resistance: the chase and the race. Antibiotics 11:182. https://doi.org/10.3390/antibiotics11020182 Jorge PM, de Oliveira IM, Filippi Chiela EC, Viau CM, Saffi J, Horn F, Rosa RM, Guecheva TN, Pêgas Henriques JA (2015) Diphenyl ditelluride-induced cell cycle arrest and apoptosis: a relation with topoisomerase I inhibition. Basic Clin Pharmacol Toxicol 116:273–280. https://doi.org/10.1111/bcpt.12315 Kavanagh K, Reeves EP (2007) Insect and mammalian innate immune responses are much alike. Microbe 2:596–599. https://doi.org/10.1128/microbe.2.596.1 Kong ASY, Maran S, Yap PSX, Lim SHE, Yang SK, Cheng WH et al (2022) Anti-and Pro-oxidant properties of essential oils against antimicrobial resistance. Antioxidants 11:1819. https://doi.org/10.3390/antiox11091819 Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743. https://doi.org/10.1146/annurev.immunol.25.022106.141615 Luce-Fedrow A, Von Ohlen T, Chapes SK (2009) Ehrlichia chaffeensis infections in Drosophila melanogaster. Infect Immun 77:4815–4826. https://doi.org/10.1128/iai.00594-09 Matharu RK, Charani Z, Ciric L, Illangakoon UE, Edirisinghe M (2018) Antimicrobial activity of tellurium-loaded polymeric fiber meshes. J Appl Polym Sci 135:1–7. https://doi.org/10.1002/app.46368 Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A et al (2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399:629–655. https://doi.org/10.1016/S0140-6736(21)02724-0 Nash JH, Villegas A, Kropinski AM, Aguilar-Valenzuela R, Konczy P, Mascarenhas M et al (2010) Genome sequence of adherent-invasive Escherichia coli and comparative genomic analysis with other E. coli pathotypes. BMC Genomics 11:1–15. https://doi.org/10.1186/1471-2164-11-667 Pinheiro FC, Bortolotto VC, Araujo SM, Couto SF, Dahleh MMM, Cancela M et al (2022) Oxidative stress response system in Escherichia coli arising from diphenyl ditelluride (PhTe) 2 exposure. Toxicol in Vitro 83:105404. https://doi.org/10.1016/j.tiv.2022.105404 Ponnusamy D, Kozlova EV, Sha J, Erova TE, Azar SR, Fitts EC et al (2016) Cross-talk among flesh-eating Aeromonas hydrophila strains in mixed infection leading to necrotizing fasciitis. Proc Natl Acad Sci 113:722–727. https://doi.org/10.1073/pnas.1523817113 Puntel RL, Roos DH, Seeger RL, Rocha JBT (2013) Mitochondrial electron transfer chain complexes inhibition by different organochalcogens. Toxicol Vitr 27:59–70. https://doi.org/10.1016/j.tiv.2012.10.011 Robert A, Talagrand-Reboul E, Figueras MJ, Ruimy R, Boyer L, Lamy B (2023) Drosophila melanogaster systemic infection model to study altered virulence during polymicrobial infection by aeromonas. Pathogens 12:405. https://doi.org/10.3390/pathogens12030405 Romeo Y, Lemaitre B (2008) Drosophila immunity: methods for monitoring the activity of Toll and Imd signaling pathways. Innate Immun. https://doi.org/10.1007/978-1-59745-570-1_22 Serwecińska L (2020) Antimicrobials and antibiotic-resistant bacteria: a risk to the environment and to public health. Water 12:3313. https://doi.org/10.3390/w12123313 Siva-Jothy JA, Prakash A, Vasanthakrishnan RB, Monteith KM, Vale PF (2018) Oral bacterial infection and shedding in Drosophila melanogaster. JoVE 135:e57676. https://doi.org/10.3791/57676 Tanji T, Hu X, Weber AN, Ip YT (2007) Toll and IMD pathways synergistically activate an innate immune response in Drosophila melanogaster. Mol Cell Biol 27:4578–4588. https://doi.org/10.1128/mcb.01814-06 Trindade C, Juchem ALM, Guecheva TN, De Oliveira IM, Dos Santos Silveira P, Vargas JE, Puga R, Pessoa C, Henriques JAP (2019) Diphenyl ditelluride: redox-modulating and antiproliferative properties. Oxid Med Cell Longev. https://doi.org/10.1155/2019/2510936 Tracy C, Krämer H (2017) Escherichia coli infection of Drosophila. Bio-Protoc 7:e2256–e2256. https://doi.org/10.21769/bioprotoc.2256 Van den Bergh B (2022) Bugs on drugs: a drosophila melanogaster gut model to study in vivo antibiotic tolerance of E. coli. Microorganisms 10:119. https://doi.org/10.3390/microorganisms10010119 Wang M, Tang JC (2010) Research of antibiotics pollution in soil environments and its ecological toxicity. J Agro Environ Sci 29:261–266 Yu S, Luo F, Xu Y, Zhang Y, Jin LH (2022) Drosophila innate immunity involves multiple signaling pathways and coordinated communication between different tissues. Front Immunol 13:905370. https://doi.org/10.3389/fimmu.2022.905370