Antimalarial drug discovery: efficacy models for compound screening

Nature Reviews Drug Discovery - Tập 3 Số 6 - Trang 509-520 - 2004
David A. Fidock1, Philip J. Rosenthal2, Simon L. Croft3, Reto Brun4, Solomon Nwaka5
1Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, USA
2Department of Medicine, Box 0811, University of California, San Francisco, USA
3Department of Infectious & Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
4Department of Medical Parasitology and Infection Biology, Parasite Chemotherapy, Swiss Tropical Institute, Basel, Switzerland
5Medicines for Malaria Venture, PO Box 1826, 1215 Geneva 15, Switzerland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Greenwood, B. & Mutabingwa, T. Malaria in 2002. Nature 415, 670–672 (2002).

White, N. J. The treatment of malaria. N. Engl. J. Med. 335, 800–806 (1996).

Pagola, S., Stephens, P. W., Bohle, D. S., Kosar, A. D. & Madsen, S. K. The structure of malaria pigment β-haematin. Nature 404, 307–310 (2000).

Ursos, L. M. & Roepe, P. D. Chloroquine resistance in the malarial parasite, Plasmodium falciparum. Med. Res. Rev. 22, 465–491 (2002).

Wellems, T. E. & Plowe, C. V. Chloroquine-resistant malaria. J. Infect. Dis. 184, 770–776 (2001).

Trape, J. F. The public health impact of chloroquine resistance in Africa. Am. J. Trop. Med. Hyg. 64, 12–17 (2001).

Plowe, C. V. Monitoring antimalarial drug resistance: making the most of the tools at hand. J. Exp. Biol. 206, 3745–3752 (2003).

Olliaro, P. et al. Systematic review of amodiaquine treatment in uncomplicated malaria. Lancet 348, 1196–1201 (1996).

Winstanley, P. Modern chemotherapeutic options for malaria. Lancet Infect. Dis. 1, 242–250 (2001). A useful review of current options for the treatment of malaria in the developing world.

Lang, T. & Greenwood, B. The development of Lapdap, an affordable new treatment for malaria. Lancet Infect. Dis. 3, 162–168 (2003). Describes the development of the newest approved antimalarial drug, an affordable combination regimen developed specifically for the treatment of drug-resistant infections in Africa.

Ridley, R. G. Medical need, scientific opportunity and the drive for antimalarial drugs. Nature 415, 686–693 (2002). Summarizes the current antimalarial treatment situation and promising new targets for chemotherapy.

Nwaka, S. & Ridley, R. G. Virtual drug discovery and development for neglected diseases through public–private partnerships. Nature Rev. Drug Discov. 2, 919–928 (2003). Reviews the public–private partnership model for virtual drug discovery and development for malaria and other neglected diseases.

Guerin, P. J. et al. Malaria: current status of control, diagnosis, treatment, and a proposed agenda for research and development. Lancet Infect. Dis. 2, 564–573 (2002). A summary of current state-of-the-art management of malaria in the developing world.

Dorsey, G., Vlahos, J., Kamya, M. R., Staedke, S. G. & Rosenthal, P. J. Prevention of increasing rates of treatment failure by combining sulfadoxine-pyrimethamine with artesunate or amodiaquine for the sequential treatment of malaria. J. Infect. Dis. 188, 1231–1238 (2003).

Looareesuwan, S., Chulay, J. D., Canfield, C. J. & Hutchinson, D. B. Malarone (atovaquone and proguanil hydrochloride): a review of its clinical development for treatment of malaria. Malarone Clinical Trials Study Group. Am. J. Trop. Med. Hyg. 60, 533–541 (1999). This paper is a detailed account of the development of one of the newest available antimalarial drugs. Note, however, that Malarone is much too expensive for widescale use in developing countries.

Staedke, S. G. et al. Amodiaquine, sulfadoxine/ pyrimethamine, and combination therapy for treatment of uncomplicated falciparum malaria in Kampala, Uganda: a randomised trial. Lancet 358, 368–374 (2001).

Schellenberg, D. et al. The safety and efficacy of sulfadoxine-pyrimethamine, amodiaquine, and their combination in the treatment of uncomplicated Plasmodium falciparum malaria. Am. J. Trop. Med. Hyg. 67, 17–23 (2002).

Dorsey, G. et al. Sulfadoxine/pyrimethamine alone or with amodiaquine or artesunate for treatment of uncomplicated malaria: a longitudinal randomised trial. Lancet 360, 2031–2038 (2002).

White, N. J. & Pongtavornpinyo, W. The de novo selection of drug-resistant malaria parasites. Proc. R. Soc. Lond. B 270, 545–554 (2003).

Nosten, F. et al. Effects of artesunate-mefloquine combination on incidence of Plasmodium falciparum malaria and mefloquine resistance in western Thailand: a prospective study. Lancet 356, 297–302 (2000).

White, N. J. et al. Averting a malaria disaster. Lancet 353, 1965–1967 (1999). A call to arms regarding the urgent need for new therapies for malaria in Africa.

Adjuik, M. et al. Amodiaquine-artesunate versus amodiaquine for uncomplicated Plasmodium falciparum malaria in African children: a randomised, multicentre trial. Lancet 359, 1365–1372 (2002).

van Vugt, M. et al. Artemether-lumefantrine for the treatment of multidrug-resistant falciparum malaria. Trans. R. Soc. Trop. Med. Hyg. 94, 545–548 (2000).

Rosenthal, P. J., Sijwali, P. S., Singh, A. & Shenai, B. R. Cysteine proteases of malaria parasites: targets for chemotherapy. Curr. Pharm. Des. 8, 1659–1672 (2002).

Chakrabarti, D. et al. Protein farnesyltransferase and protein prenylation in Plasmodium falciparum. J. Biol. Chem. 277, 42066–42073 (2002).

Rotella, D. P. Osteoporosis: challenges and new opportunities for therapy. Curr. Opin. Drug Discov. Devel. 5, 477–486 (2002).

Gelb, M. H. & Hol, W. G. Parasitology. Drugs to combat tropical protozoan parasites. Science 297, 343–344 (2002).

Ralph, S. A., D'Ombrain, M. C. & McFadden, G. I. The apicoplast as an antimalarial drug target. Drug Resist. Update 4, 145–151 (2001).

Waller, R. F. et al. Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 95, 12352–12357 (1998).

Jomaa, H. et al. Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 285, 1573–1576 (1999). This study is an excellent example (as is reference 32) of how an improved understanding of the molecular biology and biochemistry of Plasmodium parasites, coupled to pragmatic chemistry, can identify novel antimalarial compounds.

Missinou, M. A. et al. Fosmidomycin for malaria. Lancet 360, 1941–1942 (2002).

Surolia, N. & Surolia, A. Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum. Nature Med. 7, 167–173 (2001).

Perozzo, R. et al. Structural elucidation of the specificity of the antibacterial agent triclosan for malarial enoyl ACP reductase. J. Biol. Chem. 277, 13106–13114 (2002).

Waller, K. L., Lee, S. & Fidock, D. A. in Genomes and the Molecular Cell Biology of Malaria Parasites (eds Waters, A. P. & Janse, C. J.) 501–540 (Horizon, New York, 2004).

Biagini, G. A., O'Neill, P. M., Nzila, A., Ward, S. A. & Bray, P. G. Antimalarial chemotherapy: young guns or back to the future? Trends Parasitol. 19, 479–487 (2003).

Gardner, M. J. et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498–511 (2002).

Kissinger, J. C. et al. The Plasmodium genome database. Nature 419, 490–492 (2002).

Wu, Y., Kirkman, L. A. & Wellems, T. E. Transformation of Plasmodium falciparum malaria parasites by homologous integration of plasmids that confer resistance to pyrimethamine. Proc. Natl. Acad. Sci. USA 93, 1130–1134 (1996).

Fidock, D. A. & Wellems, T. E. Transformation with human dihydrofolate reductase renders malaria parasites insensitive to WR99210 but does not affect the intrinsic activity of proguanil. Proc. Natl. Acad. Sci. USA 94, 10931–10936 (1997).

van Dijk, M. R., Janse, C. J. & Waters, A. P. Expression of a Plasmodium gene introduced into subtelomeric regions of Plasmodium berghei chromosomes. Science 271, 662–665 (1996).

Crabb, B. S. et al. Targeted gene disruption shows that knobs enable malaria-infected red cells to cytoadhere under physiological shear stress. Cell 89, 287–296 (1997).

Sidhu, A. B. S., Verdier-Pinard, D. & Fidock, D. A. Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations. Science 298, 210–213 (2002).

Waters, A. P., Thomas, A. W., van Dijk, M. R. & Janse, C. J. Transfection of malaria parasites. Methods 13, 134–147 (1997).

Peters, W. & Robinson, B. L. in Handbook of Animal Models of Infection (eds. Zak., O. & Sande, M.) 757–773 (Academic, London, 1999).

Rathod, P. K., Ganesan, K., Hayward, R. E., Bozdech, Z. & DeRisi, J. L. DNA microarrays for malaria. Trends Parasitol. 18, 39–45 (2002).

Bozdech, Z. et al. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 1, E5 (2003).

Le Roch, K. G. et al. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301, 1503–1508 (2003).

Lasonder, E. et al. Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature 419, 537–542 (2002).

Florens, L. et al. A proteomic view of the Plasmodium falciparum life cycle. Nature 419, 520–526 (2002).

Greenbaum, D. C. et al. A role for the protease falcipain 1 in host cell invasion by the human malaria parasite. Science 298, 2002–2006 (2002).

Noedl, H., Wongsrichanalai, C. & Wernsdorfer, W. H. Malaria drug-sensitivity testing: new assays, new perspectives. Trends Parasitol. 19, 175–181 (2003). Summarizes of P. falciparum in vitro drug sensitivity tests.

Makler, M. T. & Hinrichs, D. J. Measurement of the lactate dehydrogenase activity of Plasmodium falciparum as an assessment of parasitemia. Am. J. Trop. Med. Hyg. 48, 205–210 (1993).

van der Heyde, H. C., Elloso, M. M., vande Waa, J., Schell, K. & Weidanz, W. P. Use of hydroethidine and flow cytometry to assess the effects of leukocytes on the malarial parasite Plasmodium falciparum. Clin. Diagn. Lab. Immunol. 2, 417–425 (1995).

ter Kuile, F., White, N. J., Holloway, P., Pasvol, G. & Krishna, S. Plasmodium falciparum: in vitro studies of the pharmacodynamic properties of drugs used for the treatment of severe malaria. Exp. Parasitol. 76, 85–95 (1993).

Ofulla, A. O. et al. Determination of fifty percent inhibitory concentrations (IC50) of antimalarial drugs against Plasmodium falciparum parasites in a serum-free medium. Am. J. Trop. Med. Hyg. 51, 214–218 (1994).

Gluzman, I. Y., Schlesinger, P. H. & Krogstad, D. J. Inoculum effect with chloroquine and Plasmodium falciparum. Antimicrob. Agents Chemother. 31, 32–36 (1987).

Berenbaum, M. C. A method for testing for synergy with any number of agents. J. Infect. Dis. 137, 122–130 (1978).

Ohrt, C., Willingmyre, G. D., Lee, P., Knirsch, C. & Milhous, W. Assessment of azithromycin in combination with other antimalarial drugs against Plasmodium falciparum in vitro. Antimicrob. Agents Chemother. 46, 2518–2524 (2002).

Canfield, C. J., Pudney, M. & Gutteridge, W. E. Interactions of atovaquone with other antimalarial drugs against Plasmodium falciparum in vitro. Exp. Parasitol. 80, 373–381 (1995). A good example of methodologies used in the identification of a new successful drug combination.

White, N. J. Delaying antimalarial drug resistance with combination chemotherapy. Parassitologia 41, 301–308 (1999).

Ponnudurai, T., Meuwissen, J. H., Leeuwenberg, A. D., Verhave, J. P. & Lensen, A. H. The production of mature gametocytes of Plasmodium falciparum in continuous cultures of different isolates infective to mosquitoes. Trans. R. Soc. Trop. Med. Hyg. 76, 242–250 (1982).

Templeton, T. J., Kaslow, D. C. & Fidock, D. A. Developmental arrest of the human malaria parasite Plasmodium falciparum within the mosquito midgut via CTRP gene disruption. Mol. Microbiol. 36, 1–9 (2000).

Moreno, A., Badell, E., Van Rooijen, N. & Druilhe, P. Human malaria in immunocompromised mice: new in vivo model for chemotherapy studies. Antimicrob. Agents Chemother. 45, 1847–1853 (2001).

Childs, G. E. et al. Comparison of in vitro and in vivo antimalarial activities of 9-phenanthrenecarbinols. Ann. Trop. Med. Parasitol. 78, 13–20 (1984).

Peters, W. et al. The chemotherapy of rodent malaria. XXVII. Studies on mefloquine (WR 142,490). Ann. Trop. Med. Parasitol. 71, 407–418 (1977).

Peters, W., Robinson, B. L. & Ellis, D. S. The chemotherapy of rodent malaria. XLII. Halofantrine and halofantrine resistance. Ann. Trop. Med. Parasitol. 81, 639–646 (1987).

Vennerstrom, J. L. et al. Synthesis and antimalarial activity of sixteen dispiro-1,2,4, 5-tetraoxanes: alkyl-substituted 7,8,15,16-tetraoxadispiro[5.2.5.2]hexadecanes. J. Med. Chem. 43, 2753–2758 (2000).

Posner, G. H. et al. Orally active, antimalarial, anticancer, artemisinin-derived trioxane dimers with high stability and efficacy. J. Med. Chem. 46, 1060–1065 (2003).

Peters, W. & Robinson, B. L. The chemotherapy of rodent malaria. LVI. Studies on the development of resistance to natural and synthetic endoperoxides. Ann. Trop. Med. Parasitol. 93, 325–329 (1999).

Sanni, L. A., Fonseca, L. F. & Langhorne, J. Mouse models for erythrocytic-stage malaria. Methods Mol. Med. 72, 57–76 (2002).

Wengelnik, K. et al. A class of potent antimalarials and their specific accumulation in infected erythrocytes. Science 295, 1311–1314 (2002).

Singh, A. et al. Critical role of amino acid 23 in mediating activity and specificity of vinckepain-2, a papain-family cysteine protease of rodent malaria parasites. Biochem. J. 368, 273–281 (2002).

Gysin, J. in Malaria: Parasite Biology, Pathogenesis and Protection. (ed. Sherman, I.) 419–441 (ASM, Washington DC, 1998).

Alanine, A., Nettekoven, M., Roberts, E. & Thomas, A. W. Lead generation — enhancing the success of drug discovery by investing in the hit to lead process. Comb. Chem. High Throughput Screen. 6, 51–66 (2003).

Bleicher, K. H., Bohm, H. J., Muller, K. & Alanine, A. I. Hit and lead generation: beyond high-throughput screening. Nature Rev. Drug Discov. 2, 369–378 (2003).

Di, L. & Kerns, E. H. Profiling drug-like properties in discovery research. Curr. Opin. Chem. Biol. 7, 402–408 (2003).

Kuo, M. R. et al. Targeting tuberculosis and malaria through inhibition of enoyl reductase: compound activity and structural data. J. Biol. Chem. 278, 20851–20859 (2003).

Yuvaniyama, J. et al. Insights into antifolate resistance from malarial DHFR-TS structures. Nature Struct. Biol. 10, 357–365 (2003).

Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46, 3–26 (2001).

Venkatesh, S. & Lipper, R. A. Role of the development scientist in compound lead selection and optimization. J. Pharm. Sci. 89, 145–154 (2000).

Molzon, J. The common technical document: the changing face of the New Drug Application. Nature Rev. Drug Discov. 2, 71–74 (2003).

Nzila, A. M. et al. Molecular evidence of greater selective pressure for drug resistance exerted by the long-acting antifolate pyrimethamine/sulfadoxine compared with the shorter-acting chlorproguanil/dapsone on Kenyan Plasmodium falciparum. J. Infect. Dis. 181, 2023–2028 (2000).

Mutabingwa, T. et al. Chlorproguanil-dapsone for treatment of drug-resistant falciparum malaria in Tanzania. Lancet 358, 1218–1223 (2001).

Jiang, L., Lee, P. C., White, J. & Rathod, P. K. Potent and selective activity of a combination of thymidine and 1843U89, a folate-based thymidylate synthase inhibitor, against Plasmodium falciparum. Antimicrob. Agents Chemother. 44, 1047–1050 (2000).

Razakantoanina, V., Nguyen Kim, P. P. & Jaureguiberry, G. Antimalarial activity of new gossypol derivatives. Parasitol. Res. 86, 665–668 (2000).

Bracchi-Ricard, V. et al. Characterization of an eukaryotic peptide deformylase from Plasmodium falciparum. Arch. Biochem. Biophys. 396, 162–170 (2001).

Banumathy, G., Singh, V., Pavithra, S. R. & Tatu, U. Heat shock protein 90 function is essential for Plasmodium falciparum growth in human erythrocytes. J. Biol. Chem. 278, 18336–18345 (2003).

Davioud-Charvet, E. et al. A prodrug form of a Plasmodium falciparum glutathione reductase inhibitor conjugated with a 4-anilinoquinoline. J. Med. Chem. 44, 4268–4276 (2001).

Woodard, C. L. et al. Oxindole-based compounds are selective inhibitors of Plasmodium falciparum cyclin dependent protein kinases. J. Med. Chem. 46, 3877–3882 (2003).

Eckstein-Ludwig, U. et al. Artemisinins target the SERCA of Plasmodium falciparum. Nature 424, 957–961 (2003).

Gero, A. M. et al. New malaria chemotherapy developed by utilization of a unique parasite transport system. Curr. Pharm. Des. 9, 867–877 (2003).

Joet, T., Eckstein-Ludwig, U., Morin, C. & Krishna, S. Validation of the hexose transporter of Plasmodium falciparum as a novel drug target. Proc. Natl Acad. Sci. USA 100, 7476–7479 (2003).

De, D., Krogstad, F. M., Byers, L. D. & Krogstad, D. J. Structure–activity relationships for antiplasmodial activity among 7-substituted 4-aminoquinolines. J. Med. Chem. 41, 4918–4926 (1998).

Stocks, P. A. et al. Novel short chain chloroquine analogues retain activity against chloroquine resistant K1 Plasmodium falciparum. J. Med. Chem. 45, 4975–4983 (2002).

Francis, S. E. et al. Molecular characterization and inhibition of a Plasmodium falciparum aspartic hemoglobinase. EMBO J. 13, 306–317 (1994).

Haque, T. S. et al. Potent, low-molecular-weight non-peptide inhibitors of malarial aspartyl protease plasmepsin II. J. Med. Chem. 42, 1428–1440 (1999).

Rosenthal, P. J. in Antimalarial Chemotherapy: Mechanisms of Action, Resistance, and New Directions in Drug Discovery (ed. Rosenthal, P. J.) 325–345 (Humana, Totawa, New Jersey, 2001).

Shenai, B. R. et al. Structure–activity relationships for inhibition of cysteine protease activity and development of Plasmodium falciparum by peptidyl vinyl sulfones. Antimicrob. Agents Chemother. 47, 154–160 (2003).

Vennerstrom, J. L. et al. Synthesis and antimalarial activity of sixteen dispiro-1,2,4, 5- tetraoxanes: alkyl-substituted 7,8,15,16-tetraoxadispiro[5.2.5.2]hexadecanes. J. Med. Chem. 43, 2753–2758 (2000).

Borstnik, K., Paik, I. H. & Posner, G. H. Malaria: new chemotherapeutic peroxide drugs. Mini Rev. Med. Chem. 2, 573–583 (2002).

Vaidya, A. B. in Antimalarial Chemotherapy: Mechanisms of Action, Resistance, and New Directions in Drug Discovery (ed. Rosenthal, P. J.) 203–218 (Humana, Totowa, New Jersey, 2001).

Clough, B. & Wilson, R. J. M. in Antimalarial Chemotherapy: Mechanisms of Action, Resistance, and New Directions in Drug Discovery (ed. Rosenthal, P. J.) 265–286 (Humana, Totawa, New Jersey, 2001).

McLeod, R. et al. Triclosan inhibits the growth of Plasmodium falciparum and Toxoplasma gondii by inhibition of apicomplexan Fab I. Int. J. Parasitol. 31, 109–113 (2001).

Ohkanda, J. et al. Peptidomimetic inhibitors of protein farnesyltransferase show potent antimalarial activity. Bioorg. Med. Chem. Lett. 11, 761–764 (2001).

Blackman, M. J. Proteases involved in erythrocyte invasion by the malaria parasite: function and potential as chemotherapeutic targets. Curr. Drug Targets 1, 59–83 (2000).

Gupta, S., Thapar, M. M., Mariga, S. T., Wernsdorfer, W. H. & Bjorkman, A. Plasmodium falciparum: in vitro interactions of artemisinin with amodiaquine, pyronaridine, and chloroquine. Exp. Parasitol. 100, 28–35 (2002).

Chawira, A. N., Warhurst, D. C., Robinson, B. L. & Peters, W. The effect of combinations of qinghaosu (artemisinin) with standard antimalarial drugs in the suppressive treatment of malaria in mice. Trans. R. Soc. Trop. Med. Hyg. 81, 554–558 (1987).

Peters, W. & Robinson, B. L. The chemotherapy of rodent malaria. LV. Interactions between pyronaridine and artemisinin. Ann. Trop. Med. Parasitol. 91, 141–145 (1997).